Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T08:15:34.392Z Has data issue: false hasContentIssue false

Standard covariant formulation for perfect-fluid dynamics

Published online by Cambridge University Press:  21 April 2006

B. Carter
Affiliation:
CNRS, Groupe d'Astrophysique Relativiste, Observatoire de Paris-Meudon, 92195 Meudon, France
B. Gaffet
Affiliation:
CNRS, Section d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur Yvette, France

Abstract

After a brief description of the Milne generalization of the Galilean invariance group for the space–time of Newtonian kinematics, it is shown how the generalized Eulerian dynamical equations for the motion of a multiconstituent perfect (nonconducting) fluid can be expressed in terms of interior products of current 4-vectors with exterior derivatives of the appropriate 4-momentum 1-forms (whose role is central in this approach) in a fully covariant standard form whose structure is identical in the Newtonian case to that of the corresponding equation for the case of (special or general) relativistic perfect fluid mechanics. In addition to space–time covariance, this standard form exhibits chemical covariance in the sense that it is manifestly invariant under redefinition of the number densities of the independent conserved chemical constituents in terms of linear combinations of each other. It is shown how, in the strictly conservative case when no chemical reactions occur, this standard form, can be used (via the construction of suitably generalized Clebsch potentials) for setting up an Eulerian (fixed-point) variation principle in a form that is simultaneously valid for both Newtonian and relativistic cases.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bekenstein, J. D. 1986 Helicity Conservation Laws for Fluids and Plasmas. Preprint, Ben Gurion University, Beersheva, Israel.
Bekenstein, J. D. & Oron, E. 1977 Phys. Rev. D 18, 1809.
Bonnor, W. B. 1957 Mon. Not. R.A.S. 117, 104.
Carter, B. 1973 Commun. Math. Phys. 30, p. 261.
Carter, B. 1979 Perfect fluid and magnetic field conservation laws in the theory of black hole accretion rings. In Active Galactic Nuclei (ed. C. Hazard & S. Mitton), pp. 273300. Cambridge University Press.
Carter, B. 1980 Proc. R. Soc. Lond. A 372, 169.
Ertel, H. 1942 Met. Z. 59, 27.
Van Danzig, D. 1939 Physica 6, 693.
Friedman, J. L. 1978 Commun. Math. Phys. 62, 247.
Gaffet, B. 1985 J. Fluid Mech. 156, 141.
Katz, J. 1984 Proc. R. Soc. Lond. A 391, 415.
Katz, J. & Lynden-Bell, D. 1982 Proc. R. Soc. Lond. A 381, 263.
Kelvin, Lord 1910 Mathematical and Physical Papers, vol. 4.
Lichnerowicz, A. 1967 Relativistic Hydrodynamics and Magnetohydrodynamics. Benjamin.
Misner, C. W., Thorne, K. S. & Wheeler, J. A. 1973 Gravitation. Freeman.
Mccrea, W. H. & Milne, E. A. 1934 Q. J. Maths 5, 73.
Milne, E. A. 1934 Q. J. Maths 5, 64.
Moffatt, H. K. 1969 J. Fluid Mech. 35, 117.
Schmidt, L. A. 1970 Pure Appl. Chem. 22, 493 (also in A Critical Review of Thermodynamics (ed. E. B. Stuart, B. Gal-Or & A. J. Brainard). Mono.
Schutz, B. F. 1970 Phys. Rev. A 2, 2762.
Schutz, B. F. 1980 Geometrical Methods of Mathematical Physics. Cambridge University Press.
Schutz, B. F. & Sorkin, R. 1977 Ann. Phys. (NY), 107, 1.
Seliger, R. L. & Whitham, G. B. 1968 Proc. R. Soc. Lond. A 305, 1.
Thorne, K. S. 1967 In Hautes Energies en Astrophysique (Les Houches 1966) (ed. C. De Witt, E. Schatzmann & P. Veron), vol. 3, p. 259. Gordon & Breach.