Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T09:26:49.648Z Has data issue: false hasContentIssue false

Statistical mechanics of the Euler equations without vortex stretching

Published online by Cambridge University Press:  19 October 2021

Tong Wu
Affiliation:
Univ. Lyon, CNRS, Ecole Centrale de Lyon, INSA Lyon, Univ. Claude Bernard Lyon 1, LMFA, UMR5509, 69340 Ecully, France
Wouter J.T. Bos*
Affiliation:
Univ. Lyon, CNRS, Ecole Centrale de Lyon, INSA Lyon, Univ. Claude Bernard Lyon 1, LMFA, UMR5509, 69340 Ecully, France
*
Email address for correspondence: wouter.bos@ec-lyon.fr

Abstract

We consider the relaxation to thermal equilibrium of the Galerkin-truncated Euler equations in three dimensions, from which vortex stretching is removed. We prove that helicity and enstrophy are conserved by the system. Using statistical mechanics, we derive analytical predictions for the equilibrium energy and helicity spectra. Results are verified using pseudo-spectral direct numerical simulations. Results show that if the initial condition contains helicity, the system relaxes to a force-free large-scale structure akin to an Arnold–Beltrami–Childress (ABC) flow.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agoua, W., Favier, B., Delache, A., Briard, A. & Bos, W.J.T. 2021 Spontaneous generation and reversal of helicity in anisotropic turbulence. Phys. Rev. E 103 (6), L061101.CrossRefGoogle ScholarPubMed
Alexakis, A. 2017 Helically decomposed turbulence. J. Fluid Mech. 812, 752.CrossRefGoogle Scholar
Alexakis, A. & Brachet, M.-E. 2019 On the thermal equilibrium state of large-scale flows. J. Fluid Mech. 872, 594625.CrossRefGoogle Scholar
André, J.C. & Lesieur, M. 1977 Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81, 187.CrossRefGoogle Scholar
Batchelor, G.K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12, II–233.CrossRefGoogle Scholar
Biferale, L., Buzzicotti, M. & Linkmann, M. 2017 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows. Phys. Fluids 29 (11), 111101.CrossRefGoogle Scholar
Biferale, L., Musacchio, S. & Toschi, F. 2012 Inverse energy cascade in three-dimensional isotropic turbulence. Phys. Rev. Lett. 108 (16), 164501.CrossRefGoogle ScholarPubMed
Borue, V. & Orszag, S.A. 1997 Spectra in helical three-dimensional homogeneous isotropic turbulence. Phys. Rev. E 55 (6), 7005.CrossRefGoogle Scholar
Bos, W.J.T. 2021 Three-dimensional turbulence without vortex stretching. J. Fluid Mech. 915, A121.CrossRefGoogle Scholar
Bos, W.J.T. & Bertoglio, J.P. 2006 Dynamics of spectrally truncated inviscid turbulence. Phys. Fluids 18, 071701.CrossRefGoogle Scholar
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227.CrossRefGoogle Scholar
Buaria, D., Pumir, A. & Bodenschatz, E. 2020 Self-attenuation of extreme events in Navier–Stokes turbulence. Nat. Commun. 11 (1), 17.CrossRefGoogle ScholarPubMed
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295317.CrossRefGoogle Scholar
Carbone, M. & Bragg, A.D. 2020 Is vortex stretching the main cause of the turbulent energy cascade? J. Fluid Mech. 883, R2.CrossRefGoogle Scholar
Cichowlas, C., Bonaïti, P., Debbasch, F. & Brachet, M. 2005 Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95, 264502.CrossRefGoogle ScholarPubMed
Constantin, P. 2007 On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44 (4), 603621.CrossRefGoogle Scholar
Davidson, P.A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.CrossRefGoogle Scholar
Delache, A., Cambon, C. & Godeferd, F. 2014 Scale by scale anisotropy in freely decaying rotating turbulence. Phys. Fluids 26 (2), 025104.CrossRefGoogle Scholar
Eyink, G.L. & Spohn, H. 1993 Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J. Stat. Phys. 70 (3), 833886.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence, the Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U., Pomyalov, A., Procaccia, I. & Ray, S.S. 2012 Turbulence in noninteger dimensions by fractal Fourier decimation. Phys. Rev. Lett. 108 (7), 074501.CrossRefGoogle ScholarPubMed
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68 (4), 769778.CrossRefGoogle Scholar
Fyfe, D. & Montgomery, D. 1976 High-beta turbulence in two-dimensional magnetohydrodynamics. J. Plasma Phys. 16 (2), 181191.CrossRefGoogle Scholar
Hou, T.Y. & Li, R. 2006 Dynamic depletion of vortex stretching and non-blowup of the 3-d incompressible Euler equations. J. Nonlinear Sci. 16 (6), 639664.CrossRefGoogle Scholar
Johnson, P.L. 2020 Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys. Rev. Lett. 124 (10), 104501.CrossRefGoogle ScholarPubMed
van Kan, A., Alexakis, A. & Brachet, M. 2021 Geometric microcanonical theory of two-dimensional truncated Euler flows. arXiv:2104.11282.Google Scholar
Kerr, R.M. 1993 Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids A 5 (7), 17251746.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301.Google Scholar
Kraichnan, R.H. 1967 Intermittency in the very small scales of turbulence. Phys. Fluids 10, 2080.CrossRefGoogle Scholar
Kraichnan, R.H. 1971 An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech. 47, 513.CrossRefGoogle Scholar
Kraichnan, R.H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745.CrossRefGoogle Scholar
Kraichnan, R.H. & Montgomery, D. 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43 (5), 547.CrossRefGoogle Scholar
Lee, T.D. 1952 On some statistical properties of hydrodynamical and magnetohydrodynamical fields. Q. Appl. Maths 10, 69.CrossRefGoogle Scholar
Leith, C.E. 1968 Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671.CrossRefGoogle Scholar
Leprovost, N., Dubrulle, B. & Chavanis, P.-H. 2006 Dynamics and thermodynamics of axisymmetric flows: theory. Phys. Rev. E 73, 046308.CrossRefGoogle ScholarPubMed
Lesieur, M. 1990 Turbulence in Fluids. Kluwer.CrossRefGoogle Scholar
Lundgren, T.S. & Pointin, Y.B. 1977 Statistical mechanics of two-dimensional vortices. J. Stat. Phys. 17 (5), 323355.CrossRefGoogle Scholar
Miller, J. 1990 Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65, 21372140.CrossRefGoogle ScholarPubMed
Moffatt, H.K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117129.CrossRefGoogle Scholar
Mohseni, K. 2001 Statistical equilibrium theory for axisymmetric flows: Kelvin's variational principle and an explanation for the vortex ring pinch-off process. Phys. Fluids 13 (7), 19241931.CrossRefGoogle Scholar
Montgomery, D.C. & Joyce, G. 1974 Statistical mechanics of ‘negative temperature’ states. Phys. Fluids 17, 1139.CrossRefGoogle Scholar
Moreau, J.J. 1961 Constantes d'un îlot tourbillonnaire en fluide parfait barotrope. C. R. Hebd. Seances Acad. Sci. 252, 28102812.Google Scholar
Naso, A., Monchaux, R., Chavanis, P.H. & Dubrulle, B. 2010 Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined. Phys. Rev. E 81, 066318.CrossRefGoogle ScholarPubMed
Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6, 279.CrossRefGoogle Scholar
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.CrossRefGoogle Scholar
Salmon, R. 2013 Coupled systems of two-dimensional turbulence. J. Fluid Mech. 732, R2.CrossRefGoogle Scholar
Servidio, S., Matthaeus, W.H. & Dmitruk, P. 2008 Depression of nonlinearity in decaying isotropic MHD turbulence. Phys. Rev. Lett. 100, 095005.CrossRefGoogle ScholarPubMed
Shukla, V., Fauve, S. & Brachet, M. 2016 Statistical theory of reversals in two-dimensional confined turbulent flows. Phys. Rev. E 94 (6), 061101.CrossRefGoogle ScholarPubMed
Thalabard, S. 2013 Contributions to the statistical mechanics of ideal two and a half dimensional flows. PhD thesis, Université Paris Sud-Paris XI.Google Scholar
Venaille, A., Gostiaux, L. & Sommeria, J. 2017 A statistical mechanics approach to mixing in stratified fluids. J. Fluid Mech. 810, 554.CrossRefGoogle Scholar
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4 (2), 350363.CrossRefGoogle Scholar
Zhu, J.-Z. & Hammett, G.W. 2010 Gyrokinetic statistical absolute equilibrium and turbulence. Phys. Plasmas 17 (12), 122307.Google Scholar