Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T10:55:06.507Z Has data issue: false hasContentIssue false

Statistical state dynamics of vertically sheared horizontal flows in two-dimensional stratified turbulence

Published online by Cambridge University Press:  12 September 2018

Joseph G. Fitzgerald*
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
Brian F. Farrell
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
*
Email address for correspondence: jfitzgerald@fas.harvard.edu

Abstract

Simulations of strongly stratified turbulence often exhibit coherent large-scale structures called vertically sheared horizontal flows (VSHFs). VSHFs emerge in both two-dimensional (2D) and three-dimensional (3D) stratified turbulence with similar vertical structure. The mechanism responsible for VSHF formation is not fully understood. In this work, the formation and equilibration of VSHFs in a 2D Boussinesq model of stratified turbulence is studied using statistical state dynamics (SSD). In SSD, equations of motion are expressed directly in the statistical variables of the turbulent state. Restriction to 2D turbulence facilitates application of an analytically and computationally attractive implementation of SSD referred to as S3T, in which the SSD is expressed by coupling the equation for the horizontal mean structure with the equation for the ensemble mean perturbation covariance. This second-order SSD produces accurate statistics, through second order, when compared with fully nonlinear simulations. In particular, S3T captures the spontaneous emergence of the VSHF and associated density layers seen in simulations of turbulence maintained by homogeneous large-scale stochastic excitation. An advantage of the S3T system is that the VSHF formation mechanism, which is wave–mean flow interaction between the emergent VSHF and the stochastically excited large-scale gravity waves, is analytically understood in the S3T system. Comparison with fully nonlinear simulations verifies that S3T solutions accurately predict the scale selection, dependence on stochastic excitation strength, and nonlinear equilibrium structure of the VSHF. These results constitute a theory for VSHF formation applicable to interpreting simulations and observations of geophysical examples of turbulent jets such as the ocean’s equatorial deep jets.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ascani, F., Firing, E., McCreary, J. P., Brandt, P. & Greatbatch, R. J. 2015 The deep equatorial ocean circulation in wind-forced numerical solutions. J. Phys. Oceanogr. 45, 17091734.Google Scholar
Bakas, N. A., Constantinou, N. C. & Ioannou, P. J. 2018 Statistical state dynamics of weak jets in barotropic beta-plane turbulence. J. Atmos. Sci. (in review), arXiv:1708.03031.Google Scholar
Bakas, N. A. & Ioannou, P. J. 2011 Structural stability theory of two-dimensional fluid flow under stochastic forcing. J. Fluid Mech. 682, 332361.Google Scholar
Bakas, N. A. & Ioannou, P. J. 2013 On the mechanism underlying the spontaneous emergence of barotropic zonal jets. J. Atmos. Sci. 70, 22512271.Google Scholar
Bakas, N. A., Ioannou, P. J. & Kefaliakos, G. E. 2001 The emergence of coherent structures in stratified shear flow. J. Atmos. Sci. 58 (18), 27902806.Google Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009 A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.Google Scholar
Brandt, P., Funk, A., Hormann, V., Dengler, M., Greatbatch, R. J. & Toole, J. M. 2011 Interannual atmospheric variability forced by the deep equatorial Atlantic Ocean. Nature 473, 497500.Google Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J. M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.Google Scholar
Constantinou, N.2015 Formation of large-scale structures by turbulence in rotating planets. PhD thesis, National and Kapodistrian University of Athens, also at arXiv:1503.07644.Google Scholar
Constantinou, N. C., Farrell, B. F. & Ioannou, P. J. 2014 Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71, 18181842.Google Scholar
Constantinou, N. C. & Parker, J. B. 2018 Magnetic suppression of zonal flows on a beta plane. Astrophys. J. 863 (1), 46.Google Scholar
Davis, P. J. 1978 Circulant Matrices. Wiley-Interscience.Google Scholar
Eden, C. & Dengler, M. 2008 Stacked jets in the deep equatorial Atlantic Ocean. J. Geophys. Res. 113, C04003.Google Scholar
Farrell, B. F., Gayme, D. F. & Ioannou, P. J. 2017a A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. Lond. A 375, 20160081.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993a Stochastic dynamics of baroclinic waves. J. Atmos. Sci. 50, 40444057.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993b Transient development of perturbations in stratified shear flow. J. Atmos. Sci. 50, 22012214.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part I. Autonomous operators. J. Atmos. Sci. 53, 20252040.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2002 Perturbation growth and structure in uncertain flows. Part II. J. Atmos. Sci. 59, 26472664.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 21012118.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2008 Formation of jets by baroclinic turbulence. J. Atmos. Sci. 65, 33533375.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2009a A stochastic structural stability theory model of the drift wave–zonal flow system. Phys. Plasmas 16, 112903.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2009b A theory of baroclinic turbulence. J. Atmos. Sci. 66, 24442454.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2009c Emergence of jets from turbulence in the shallow-water equations on an equatorial beta plane. J. Atmos. Sci. 66, 31973207.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2017a Statistical state dynamics: a new perspective on turbulence in shear flow. In Zonal Jets: Phenomenology, Genesis, Physics (ed. Galperin, B. & Read, P. L.). Cambridge University Press.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2017b Statistical state dynamics-based analysis of the physical mechanisms sustaining and regulating turbulence in Couette flow. Phys. Rev. Fluids 2 (8), 084608.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2017c Statistical state dynamics based theory for the formation and equilibration of Saturn’s north polar jet. Phys. Rev. Fluids 2 (7), 073801.Google Scholar
Farrell, B. F., Ioannou, P. J. & Nikolaidis, M.-A. 2017b Instability of the roll-streak structure induced by background turbulence in pretransitional Couette flow. Phys. Rev. Fluids 2 (3), 034607.Google Scholar
Fitzgerald, J. G. & Farrell, B. F. 2014 Mechanisms of mean flow formation and suppression in two-dimensional Rayleigh–Bénard convection. Phys. Fluids 26, 054104.Google Scholar
Fitzgerald, J. G. & Farrell, B. F. 2018 Vertically sheared horizontal flow-forming instability in stratified turbulence: linear stability analysis using the analytical approach to statistical state dynamics. J. Atmos. Sci. (in review), arXiv:1803.00847v1.Google Scholar
Fjørtoft, R. 1953 On the changes in the spectral distribution of kinetic energy for two-dimensional, non-divergent flow. Tellus 5A, 225230.Google Scholar
Galmiche, M. & Hunt, J. C. R. 2002 The formation of shear and density layers in stably stratified turbulent flows: linear processes. J. Fluid Mech. 455, 243262.Google Scholar
Galmiche, M., Thual, O. & Bonneton, P. 2002 Direct numerical simulation of turbulence–mean field interactions in a stably stratified fluid. J. Fluid Mech. 455, 213242.Google Scholar
Galperin, B., Sukoriansky, S. & Anderson, P. S. 2007 On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett. 8 (3), 6569.Google Scholar
Galperin, B., Sukoriansky, S. & Dikovskaya, N. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with a beta-effect. Ocean Dyn. 60 (2, SI), 427441.Google Scholar
Galperin, B., Young, R. M. B., Sukoriansky, S. & Dikovskaya, N. 2014 Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 229, 295320.Google Scholar
Herbert, C., Marino, R., Rosenberg, D. & Pouquet, A. 2016 Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J. Fluid Mech. 806, 165204.Google Scholar
Herring, J. R. & Métais, O. 1989 Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 202, 97115.Google Scholar
Holloway, G. 1986 Eddies, waves, circulation, and mixing: statistical geofluid mechanics. Annu. Rev. Fluid Mech. 18, 91147.Google Scholar
Hua, B. L., D’orgeville, M. & Fruman, M. D. 2008 Destabilization of mixed Rossby gravity waves and the formation of equatorial zonal jets. J. Fluid Mech. 610, 311341.Google Scholar
Huang, H.-P., Galperin, B. & Sukoriansky, S. 2001 Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 13 (1), 225240.Google Scholar
Kaminski, A. K., Caulfield, C. P. & Taylor, J. R. 2014 Transient growth in strongly stratified shear layers. J. Fluid Mech. 758, R4.Google Scholar
Kraichnan, R. H. 1957 Relation of fourth-order to second-order moments in stationary isotropic turbulence. Phys. Rev. 107 (6), 14851490.Google Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.Google Scholar
Kumar, A., Verma, M. K. & Sukhatme, J. 2017 Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing. J. Turbul. 18 (3), 219239.Google Scholar
Laval, J. P., McWilliams, J. & Dubrulle, B. 2003 Forced stratified turbulence: successive transitions with Reynolds number. Phys. Rev. E 68 (3), 036308.Google Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.Google Scholar
Majda, A. J., Timofeyev, I. & Vanden Eijnden, E. 1999 Models for stochastic climate prediction. Proc. Natl Acad. Sci. USA 96, 1468714691.Google Scholar
Marino, R., Mininni, P. D., Rosenberg, D. L. & Pouquet, A. 2014 Large-scale anisotropy in stably stratified rotating flows. Phys. Rev. E 90 (2), 023018.Google Scholar
Marston, J. B. 2010 Statistics of the general circulation from cumulant expansions. Chaos 20, 041107.Google Scholar
Marston, J. B. 2012 Planetary atmospheres as nonequilibrium condensed matter. Annu. Rev. Condens. Matter Phys. 3, 285310.Google Scholar
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 19551966.Google Scholar
McCreary, J. P. 1984 Equatorial beams. J. Mar. Res. 42, 395430.Google Scholar
Ménesguen, C., Hua, B. L., Fruman, M. D. & Schopp, R. 2009 Intermittent layering in the Atlantic equatorial deep jets. J. Mar. Res. 67, 347360.Google Scholar
Muench, J. E. & Kunze, E. 1999 Internal wave interactions with equatorial deep jets. Part I. Momentum-flux divergences. J. Phys. Oceanogr. 29, 14531467.Google Scholar
Ogura, Y. 1963 A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence. J. Fluid Mech. 16 (1), 3340.Google Scholar
Parker, J. B. & Krommes, J. A. 2013 Zonal flow as pattern formation. Phys. Plasmas 20, 100703.Google Scholar
Parker, J. B. & Krommes, J. A. 2014 Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys. 16, 035006.Google Scholar
Remmel, M., Sukhatme, J. & Smith, L. M. 2013 Nonlinear gravity–wave interactions in stratified turbulence. Theor. Comput. Fluid Dyn. 28, 131145.Google Scholar
Riley, J. J. & Lelong, M.-P. 2000 Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613657.Google Scholar
Rorai, C., Mininni, P. D. & Pouquet, A. 2015 Stably stratified turbulence in the presence of large-scale forcing. Phys. Rev. E 92 (1), 013003.Google Scholar
Salmon, R. 1982 Geostrophic turbulence. In Topics in Ocean Physics (ed. Osborne, A. R. & Rizzoli, P. M.). Italian Physical Society.Google Scholar
Smith, L. M. 2001 Numerical study of two-dimensional stratified turbulence. In Advances in Wave Interaction and Turbulence (ed. Milewski, P. A., Smith, L. M., Waleffe, F. & Tabak, E. G.). American Mathematical Society.Google Scholar
Smith, L. M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145168.Google Scholar
Squire, J. & Bhattacharjee, A. 2015 Statistical simulation of the magnetorotational dynamo. Phys. Rev. Lett. 114 (8), 085002.Google Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.Google Scholar
St-Onge, D. A. & Krommes, J. A. 2017 Zonostrophic instability driven by discrete particle noise. Phys. Plasmas 24, 042107.Google Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2009 Transport of momentum and scalar in turbulent flows with anisotropic dispersive waves. Geophys. Res. Lett. 36, L14609.Google Scholar
Sukoriansky, S. & Galperin, B. 2016 QNSE theory of turbulence anisotropization and onset of the inverse energy cascade by solid body rotation. J. Fluid Mech. 805, 384421.Google Scholar
Taylor, J. R.2008 Numerical simulations of the stratified oceanic bottom boundary layer. PhD thesis, University of California, San Diego.Google Scholar
Thomas, V. L., Farrell, B. F., Ioannou, P. J. & Gayme, D. F. 2015 A minimal model of self-sustaining turbulence. Phys. Fluids 27, 105104.Google Scholar
Thomas, V. L., Lieu, B. K., Jovanovic, M. R., Farrell, B. F., Ioannou, P. J. & Gayme, D. F. 2014 Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow. Phys. Fluids 26, 105112.Google Scholar
Tobias, S. M., Dagon, K. & Marston, J. B. 2011 Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J. 727, 127.Google Scholar
Tobias, S. M. & Marston, J. B. 2013 Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110, 104502.Google Scholar
Vasavada, A. R. & Showman, A. P. 2005 Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 19351996.Google Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.Google Scholar
Waite, M. L. & Bartello, P. 2006 Stratified turbulence generated by internal gravity waves. J. Fluid Mech. 546, 313339.Google Scholar
Wunsch, C. 1977 Response of an equatorial ocean to a periodic monsoon. J. Phys. Oceanogr. 7, 497511.Google Scholar
Youngs, M. & Johnson, G. 2015 Basin-wavelength equatorial deep jet signals across three oceans. J. Phys. Oceanogr. 45, 21342148.Google Scholar