Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T03:30:08.471Z Has data issue: false hasContentIssue false

Steady one-dimensional nozzle flow solutions of liquid–gas mixtures

Published online by Cambridge University Press:  20 November 2013

S. LeMartelot*
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France
R. Saurel
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France RS2N, Bastidon de la Caou, 13360 Roquevaire, France
O. Le Métayer
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France
*
Email address for correspondence: sebastien.lemartelot@polytech.univ-mrs.fr

Abstract

Exact compressible one-dimensional nozzle flow solutions at steady state are determined in various limit situations of two-phase liquid–gas mixtures. First, the exact solution for a pure liquid nozzle flow is determined in the context of fluids governed by the compressible Euler equations and the ‘stiffened gas’ equation of state. It is an extension of the well-known ideal-gas steady nozzle flow solution. Various two-phase flow models are then addressed, all corresponding to limit situations of partial equilibrium among the phases. The first limit situation corresponds to the two-phase flow model of Kapila et al. (Phys. Fluids, vol. 13, 2001, pp. 3002–3024), where both phases evolve in mechanical equilibrium only. This model contains two entropies, two temperatures and non-conventional shock relations. The second one corresponds to a two-phase model where the phases evolve in both mechanical and thermal equilibrium. The last one corresponds to a model describing a liquid–vapour mixture in thermodynamic equilibrium. They all correspond to two-phase mixtures where the various relaxation effects are either stiff or absent. In all instances, the various flow regimes (subsonic, subsonic–supersonic, and supersonic with shock) are unambiguously determined, as well as various nozzle solution profiles.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barre, S., Rolland, J., Boitel, G., Goncalves, E. & Fortes-Patella, R. 2009 Experiments and modeling of cavitating flows in Venturi: attached sheet cavitation. Eur. J. Mech. (B/Fluids) 28 (3), 444464.Google Scholar
Barret, M., Faucher, E. & Hérard, J.-M. 2002 Schemes to compute unsteady flashing flows. AIAA J. 40, 905913.CrossRefGoogle Scholar
Clerc, S. 2000 Numerical simulation of the homogeneous equilibrium model for two-phase flows. J. Comput. Phys. 161 (1), 354375.CrossRefGoogle Scholar
Downar-Zapolski, P., Bilicki, Z., Bolle, L. & Franco, J. 1996 The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Intl J. Multiphase Flow 22 (3), 473483.Google Scholar
Drew, D. A. & Passman, S. L. 1999 Theory of Multicomponent Fluids, vol. 135. Applied Mathematical Sciences, Springer.Google Scholar
Faccanoni, G., Kokh, S. & Allaire, G. 2012 Modelling and simulation of liquid–vapour phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: Math. Model. Numer. Anal. 46, 10291054.Google Scholar
Flåtten, T. & Lund, H. 2011 Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Meth. Appl. Sci. 21 (12), 23792407.Google Scholar
Harlow, F. & Amsden, A. 1971 Fluid dynamics. Monograph LA-4700, pp. 1678–1712. Los Alamos National Laboratory.Google Scholar
Hibiki, T. & Ishii, M. 2002 Interfacial area concentration of bubbly flow systems. Chem. Engng Sci. 57 (18), 39673977.Google Scholar
Ishii, M. & Mishima, K. 1980 Study of two-fluid model and interfacial area. Tech. Rep. Argonne National Laboratory.Google Scholar
Jamet, D., Lebaigue, O., Coutris, N. & Delhaye, J. M. 2001 The second gradient method for the direct numerical simulation of liquid–vapour flows with phase change. J. Comput. Phys. 169 (2), 624651.CrossRefGoogle Scholar
Juric, D. & Tryggvason, G. 1998 Computations of boiling flows. Intl J. Multiphase Flow 24 (3), 387410.Google Scholar
Kapila, A. K., Menikoff, R., Bdzil, J. B., Son, S. F. & Stewart, D. S. 2001 Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13, 30023024.Google Scholar
LeMartelot, S., Nkonga, B. & Saurel, R. 2013a Liquid and liquid–gas flows at all speed. J. Comput. Phys. 255, 5382.Google Scholar
LeMartelot, S., Saurel, R. & Nkonga, B. 2013b Towards the direct numerical simulation of nucleate boiling flows, Intl J. Multiphase Flow (submitted).CrossRefGoogle Scholar
Le Métayer, O., Massoni, J. & Saurel, R. 2004 Élaboration des lois d’état d’un liquide et de sa vapeur pour les modèles d’écoulements diphasiques (in French). Intl J. Therm. Sci. 43 (3), 265276.Google Scholar
Lund, H. 2012 A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Maths 72 (6), 17131741.Google Scholar
Menikoff, R. & Plohr, B. J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75130.Google Scholar
Morel, C., Goreaud, N. & Delhaye, J. M. 1999 The local volumetric interfacial area transport equation: derivation and physical significance. Intl J. Multiphase Flow 25 (6), 10991128.Google Scholar
Murrone, A. & Guillard, H. 2005 Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model. Comput. Fluids 37 (10), 12091224.Google Scholar
Perigaud, G. & Saurel, R. 2005 A compressible flow model with capillary effects. J. Comput. Phys. 209, 139178.Google Scholar
Petitpas, F., Massoni, J., Saurel, R., Lapebie, E. & Munier, L. 2009a Diffuse interface model for high speed cavitating underwater systems. Intl J. Multiphase Flow 35 (8), 747759.Google Scholar
Petitpas, F., Saurel, R., Franquet, E. & Chinnayya, A. 2009b Modelling detonation waves in condensed energetic materials: multiphase CJ conditions and multidimensionnal computations. Shock Waves 19, 377401.Google Scholar
Saurel, R., Le Métayer, O., Massoni, J. & Gavrilyuk, S. 2007 Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves 16, 209232.Google Scholar
Saurel, R., Petitpas, F. & Abgrall, R. 2008 Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607, 313350.Google Scholar
Saurel, R., Petitpas, F. & Berry, R. A. 2009 Simple and efficient methods relaxation for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 16781712.CrossRefGoogle Scholar
Wegener, P. P. 1969 Nonequilibrium Flow. Marcel Dekker.Google Scholar
Wood, A. B. 1930 A Textbook of Sound. Bell.Google Scholar