Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-13T01:34:33.008Z Has data issue: false hasContentIssue false

Structure of a high-Reynolds-number turbulent wake in supersonic flow

Published online by Cambridge University Press:  20 April 2006

J. P. Bonnet
Affiliation:
Laboratoire d'Etudes Aérodynamiques et Thermiques, Laboratoire Associé au C.N.R.S. 191, Centre d'Etudes Aérodynamiques et Thermiques, 43 Route de l'Aérodrome, 86000 Poitiers, France
V. Jayaraman
Affiliation:
Laboratoire d'Etudes Aérodynamiques et Thermiques, Laboratoire Associé au C.N.R.S. 191, Centre d'Etudes Aérodynamiques et Thermiques, 43 Route de l'Aérodrome, 86000 Poitiers, France Present address: Aerodynamics Division, N.A.L., Bangalore 560037, India.
T. Alziary De Roquefort
Affiliation:
Laboratoire d'Etudes Aérodynamiques et Thermiques, Laboratoire Associé au C.N.R.S. 191, Centre d'Etudes Aérodynamiques et Thermiques, 43 Route de l'Aérodrome, 86000 Poitiers, France

Abstract

An experimental study of a high-Reynolds-number turbulent wake in supersonic flow is performed using space and space–time correlation measurements by means of hot-wire anemometry. The correlations for the streamwise component of the mass-flux fluctuations are given for six stations starting from the trailing edge down to the asymptotic part. The validity of the Taylor's hypothesis is tested, the convection velocities are determined and the downstream evolution of the optimum space–time correlation is given; the frequency spectra are discussed and the integral lengths are analysed. Finally, the three-dimensional isocorrelation surfaces are given at the six test stations and discussed in relation to classical incompressible-flow results. The downstream evolution of the correlations shows that the two sides of the wake are statistically independent near the trailing edge, and a statistical link is gradually established during the wake development. A three-zonal description of wakes generated by fully developed turbulent boundary layers applies as well for mean quantities (velocity, width) as for turbulence correlations. In the near-wake region the overall structure of the isocorrelation curves is close to that observed in turbulent boundary layers in incompressible flows; some low-frequency phenomena are observed in this region. In the latest part of the wake, an asymptotic state is reached for all the correlation characteristics; the final state reached is not explained by the double-roller-eddy model established for lower-Reynolds-number wakes; it appears that wakes generated by fully turbulent boundary layers behave quite differently from initially laminar wakes, and new turbulent structure models for high-Reynolds-number wakes are to be devised.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bestion, D. 1982 Méthodes anémométriques par fil chaud: application a l'étude d'intéractions turbulence-gradient de pression élevé en couches limites à vitesse supersonique. Thèse Docteur-Ingenieur, Université Aix-Marseille II, Sept. 1982.
Bonnet, J. P. 1982 Etude théorique et expérimentale de la turbulence dans un sillage supersonique. Thèse Doctorat ès Sciences, Université de Poitiers.
Bonnet, J. P. & Alziary de Roquefort, T. 1980 Determination an optimisation of frequency response of constant temperature hot-wire anemometers in supersonic flows. Rev. Sci. Instrum. 51, 234239.Google Scholar
Bonnet, J. P. & Alziary de Roquefort, T. 1983 The structure of a two-dimensional, high Reynolds number turbulent wake. In Structure of complex turbulent shear flow (ed. R. Dumas & L. Fulachier), pp. 324333. Springer.
Cantwell, B. J. 1981 Organized motions in turbulent flow. Ann. Rev. Fluid Mech. 13, 457515.Google Scholar
Demetriades, A. 1976 Turbulence correlations in a compressible wake. J. Fluid Mech. 74, 251267.Google Scholar
Dumas, R., Arzoumanian, E. & Favre, A. 1972 Structure de la turbulence: Corrélations spatio-temporelles doubles et triples. 13e Congr. Intl de Méc. Théor. et Appl., Moscou.
Dumas, R., Fulachier, L., Arzoumanian, E. & Favre, A. 1976 Etude de la structure de la turbulence dans une couche limite par les corrélations spatio-temporelles. J. Phys. (Paris) 37 (C1), 181184.Google Scholar
Favre, A., Kovasznay, L. S. G., Dumas, R., Gaviglio, J. & Coantic, M. 1976 La Turbulence en Méchanique des Fluides. Gauthier-Villars.
Finson, M. L. 1973 Hypersonic wake aerodynamics at high Reynolds numbers. AIAA J. 11, 11371145.Google Scholar
Fox, J. 1968 Space correlations measurements in the fluctuating turbulent wakes behind projectiles. AIAA J. 6, 233238.Google Scholar
Gaviglio, J., Dussauge, J. P., Debieve, J. F. & Favre, A. 1977 Behaviour of a turbulent flow, strongly out of equilibrium, at supersonic speeds. Phys. Fluids Suppl. 20, S179S192.Google Scholar
Grant, M. L. 1958 The large eddies of turbulent motion. J. Fluid Mech. 4, 149190.Google Scholar
Hussain, A. K. M. F. 1980 Coherent structures and studies of perturbed and unperturbed jets. In The Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez), Lecture Notes in Physics, vol. 136, pp. 252291. Springer.
Jayaraman, V. 1983 Etude des corrélations spatio-temporelles dans un sillage turbulent supersonique. Thèse Docteur Ingenieur, Université de Poitiers.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41, 283325.Google Scholar
Laufer, J. 1975 New trends in experimental turbulence research. Ann. Rev. Fluid Mech. 7, 307326.Google Scholar
Morkovin, M. V. 1956 Fluctuations and hot-wire anemometry in compressible flows. AGARDo-graph 24 (The John Hopkins University, Baltimore).Google Scholar
Payne, F. R. & Lumley, J. L. 1967 Large eddy structure of the turbulent wake behind a circular cylinder. Phys. Fluids Suppl. 10, S194S196.Google Scholar
Pot, P. J. 1979 Measurements in a 2-D wake and in a 2-D wake merging into a boundary layer. Data Rep. NRL TR 79063 L.Google Scholar
Ramaprian, B. R. & Patel, V. C. 1982 The symmetric turbulent wake of a flat plate. AIAA J. 20, 12281235.Google Scholar
Thomas, R. M. 1973 Conditional sampling and other measurements in a plane turbulent wake. J. Fluid Mech. 57, 549582.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1970 Entrainment and the structure of turbulent flows. J. Fluid Mech. 41, 1346.Google Scholar