Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T02:10:42.319Z Has data issue: false hasContentIssue false

Substantial drag reduction in turbulent flow using liquid-infused surfaces

Published online by Cambridge University Press:  24 August 2017

Tyler Van Buren*
Affiliation:
Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Alexander J. Smits
Affiliation:
Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: vanburent@gmail.com

Abstract

Experiments are presented that demonstrate how liquid-infused surfaces can reduce turbulent drag significantly in Taylor–Couette flow. The test liquid was water, and the test surface was composed of square microscopic grooves measuring $100~\unicode[STIX]{x03BC}\text{m}$ to $800~\unicode[STIX]{x03BC}\text{m}$, filled with alkane liquids with viscosities from 0.3 to 1.4 times that of water. We achieve drag reduction exceeding 35 %, four times higher than previously reported for liquid-infused surfaces in turbulent flow. The level of drag reduction increased with viscosity ratio, groove width, fluid area fraction and Reynolds number. The optimum groove width was given by $w^{+}\approx 35$.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V., Jones, A. & Choi, C. H. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25 (2), 025103.Google Scholar
Arenas, I., Bernardini, M., Iungo, G. V. & Leonardi, S. 2016 Turbulent drag reduction over super-hydrophobic and liquid infused surfaces: dependence on the dynamics of the interface. In 31st Symposium on Naval Hydrodynamics. ONR.Google Scholar
Bocquet, L. & Lauga, E. 2011 A smooth future? Nat. Mater. 10 (5), 334337.CrossRefGoogle ScholarPubMed
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.CrossRefGoogle Scholar
Fu, M. K., Mohammadi, A., Van Buren, T., Stone, H. A., Smits, A. J., Hultmark, M., Arenas, A. & Leonardi, S. 2016 Understanding the effects of finite viscosity in super-hydrophobic and liquid infused surface drag reduction. In 31st Symposium on Naval Hydrodynamics. ONR.Google Scholar
Kim, P., Kreder, M. J., Alvarenga, J. & Aizenberg, J. 2013 Hierarchical or not? effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett. 13 (4), 17931799.CrossRefGoogle ScholarPubMed
Martell, M. B., Perot, J. B. & Rothstein, J. P. 2009 Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 620 (1), 3141.CrossRefGoogle Scholar
Mohammadi, A. & Smits, A. J. 2016 Stability of two-immiscible-fluid systems: a review of canonical plane parallel flows. J. Fluids Engng 138 (10), 100803.CrossRefGoogle Scholar
Ou, J., Perot, B. & Rothstein, J. P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16 (12), 46354643.CrossRefGoogle Scholar
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25 (11), 110815.CrossRefGoogle Scholar
Park, H., Sun, G. & Kim, J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.CrossRefGoogle Scholar
Poetes, R, Holtzmann, K., Franze, K. & Steiner, U. 2010 Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105 (16), 166104.CrossRefGoogle ScholarPubMed
Rosenberg, B. J., Van Buren, T., Fu, M. K. & Smits, A. J. 2016 Turbulent drag reduction over air- and liquid-impregnated surfaces. Phys. Fluids 28 (1), 015103.CrossRefGoogle Scholar
Samaha, M. A., Tafreshi, H. V. & Gad-el Hak, M. 2012 Influence of flow on longevity of superhydrophobic coatings. Langmuir 28 (25), 97599766.CrossRefGoogle ScholarPubMed
Saranadhi, D., Chen, D., Kleingartner, J. A., Srinivasan, S., Cohen, R. E. & McKinley, G. H. 2016 Sustained drag reduction in a turbulent flow using a low-temperature leidenfrost surface. Sci. Adv. 2 (10), e1600686.CrossRefGoogle Scholar
Schönecker, C., Baier, T. & Hardt, S. 2014 Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J. Fluid Mech. 740, 168195.CrossRefGoogle Scholar
Solomon, B. R., Khalil, K. S. & Varanasi, K. K. 2014 Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30 (36), 1097010976.CrossRefGoogle ScholarPubMed
Srinivasan, S., Choi, W., Park, K. C. L., Chhatre, S. S., Cohen, R. E. & McKinley, G. H. 2013 Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matt. 9 (24), 56915702.CrossRefGoogle Scholar
Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477 (7365), 443447.CrossRefGoogle ScholarPubMed