Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T08:04:04.359Z Has data issue: false hasContentIssue false

Superfluid spherical Couette flow

Published online by Cambridge University Press:  31 July 2008

C. PERALTA
Affiliation:
Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germanycperalta@aei.mpg.de School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
A. MELATOS
Affiliation:
School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
M. GIACOBELLO
Affiliation:
Air Vehicles Division, Defence Science & Technology Organisation, Melbourne, VIC 3207, Australia
A. OOI
Affiliation:
Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia

Abstract

We solve numerically for the first time the two-fluid Hall–Vinen–Bekarevich–Khalatnikov (HVBK) equations for an He-II-like superfluid contained in a differentially rotating spherical shell, generalizing previous simulations of viscous spherical Couette flow (SCF) and superfluid Taylor–Couette flow. The simulations are conducted for Reynolds numbers in the range 1 × 102Re≤3 × 104, rotational shear 0.1≤ΔΩ/Ω≤0.3, and dimensionless gap widths 0.2≤δ≤0.5. The system tends towards a stationary but unsteady state, where the torque oscillates persistently, with amplitude and period determined by δ and ΔΩ/Ω. In axisymmetric superfluid SCF, the number of meridional circulation cells multiplies as Re increases, and their shapes become more complex, especially in the superfluid component, with multiple secondary cells arising for Re > 103. The torque exerted by the normal component is approximately three times greater in a superfluid with anisotropic Hall–Vinen (HV) mutual friction than in a classical viscous fluid or a superfluid with isotropic Gorter–Mellink (GM) mutual friction. HV mutual friction also tends to ‘pinch’ meridional circulation cells more than GM mutual friction. The boundary condition on the superfluid component, whether no slip or perfect slip, does not affect the large-scale structure of the flow appreciably, but it does alter the cores of the circulation cells, especially at lower Re. As Re increases, and after initial transients die away, the mutual friction force dominates the vortex tension, and the streamlines of the superfluid and normal fluid components increasingly resemble each other. In non-axisymmetric superfluid SCF, three-dimensional vortex structures are classified according to topological invariants. For misaligned spheres, the flow is focal throughout most of its volume, except for thread-like zones where it is strain-dominated near the equator (inviscid component) and poles (viscous component). A wedge-shaped isosurface of vorticity rotates around the equator at roughly the rotation period. For a freely precessing outer sphere, the flow is equally strain- and vorticity-dominated throughout its volume. Unstable focus/contracting points are slightly more common than stable node/saddle/saddle points in the viscous component, but not in the inviscid component. Isosurfaces of positive and negative vorticity form interlocking poloidal ribbons (viscous component) or toroidal tongues (inviscid component) which attach and detach at roughly the rotation period.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, N. & Comer, G. L. 2006 A flux-conservative formalism for convective and dissipative multi-fluid systems, with application to Newtonian superfluid neutron stars. Class. Quant. Grav. 23, 55055529.CrossRefGoogle Scholar
Andronikashvili, E. L. & Mamaladze, Y. G. 1966 Quantization of macroscopic motions and hydrodynamics of rotating helium II. Rev. Mod. Phys. 38, 567625.CrossRefGoogle Scholar
Bagchi, P. 2002 Particle dynamics in inhomegeneous flow at moderate to high Reynolds number. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Bagchi, P. & Balachandar, S. 2002 Steady planar straining flow past a rigid sphere at moderate Reynolds number. J. Fluid. Mech. 466, 365407.CrossRefGoogle Scholar
Barenghi, C. F. 1992 Vortices and the Couette flow of helium II. Phys. Rev. B 45, 22902293.CrossRefGoogle ScholarPubMed
Barenghi, C. F. 1995 Superfluid Rayleigh criterion. Phys. Rev. B 52, 35963600.CrossRefGoogle ScholarPubMed
Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. 1983 Friction on quantized vortices in helium II. A review. J. Low Temp. Phys. 52, 189246.CrossRefGoogle Scholar
Barenghi, C. F. & Jones, C. A. 1988 The stability of the Couette flow of helium II. J. Fluid Mech. 197, 551569.CrossRefGoogle Scholar
Barenghi, C. F., Donnelly, R. J. & Vinen, W. F. 2001 Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, vol. 571. Springer.CrossRefGoogle Scholar
Bekarevich, I. L. & Khalatnikov, I. M. 1961 A phenomenological derivation of the equations of vortex motion in He II. Sov. Phys. JETP 13, 643646.Google Scholar
Bell, J. B., Colella, P. & Glaz, H. M. 1989 A second-order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257283.CrossRefGoogle Scholar
Belyaev, Yu. N., Monakhov, A. A. & Yavorskaya, I. M. 1978 Stability of spherical Couette flow in thick layers when the inner sphere revolves. Fluid Dyn. 2, 162168.CrossRefGoogle Scholar
Bonnet, J. P. & Alziary de Roquefort, T. 1976 Ecoulement entre deux sphéres concentriques en rotation. J. Méc. 15, 373397.Google Scholar
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
Brown, D. L., Cortez, R. & Minion, M. L. 2001 Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168, 464499.CrossRefGoogle Scholar
Bühler, K. 1990 Symmetric and asymmetric Taylor vortex flow in spherical gaps. Acta Mech. 81, 338.CrossRefGoogle Scholar
Canuto, C., Hussaini, M., Quarteroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids 2, 765777.CrossRefGoogle Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22, 745762.CrossRefGoogle Scholar
D'Alessandro, F., McCulloch, P. M., Hamilton, P. A. & Deshpande, A. A. 1995 The timing noise of 45 southern pulsars. Mon. Not. R. Astron. Soc. 277, 10331046.CrossRefGoogle Scholar
Dennis, S. C. R. & Quartapelle, L. 1984 Finite difference solution to the flow between two rotating spheres. Comput. Fluids 12, 7792.CrossRefGoogle Scholar
Dennis, S. C. R. & Singh, S. N. 1978 Calculation of the flow between two rotating spheres by the method of series truncation. J. Comput. Phys. 28, 297314.CrossRefGoogle Scholar
Dimotakis, E. 1972 Investigation of supercritial heat flow in helium ii. PhD thesis, California Institute of Technology.Google Scholar
Don, W. S. 1994 Numerical study of pseudospectral methods in shock wave applications. J. Comput. Phys. 110, 103111.CrossRefGoogle Scholar
Don, W. S. & Solomonoff, A. 1995 Accuracy and speed in computing the Chebyshev collocation derivative. SIAM J. Sci. Comput. 16, 12531268.CrossRefGoogle Scholar
Donnelly, R. J. 2005 Quantized Vortices in Helium II. Cambridge University Press.Google Scholar
Donnelly, R. J. & Barenghi, C. F. 1998 The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 12171274.CrossRefGoogle Scholar
Dumas, G. 1991 Study of spherical Couette flow via 3-d spectral simulations: large and narrow-gap flows and their transitions. PhD thesis, California Institute of Technology.Google Scholar
Dumas, G. & Leonard, A. 1994 A divergence-free spectral expansion method for three-dimensional flows in spherical-gap geometries. J. Comput. Phys. 111, 205219.CrossRefGoogle Scholar
Egbers, C. & Rath, H. J. 1995 The existence of Taylor vortices and wide-gap instabilities in spherical Couette flow. Acta Mech. 111, 125140.CrossRefGoogle Scholar
Fornberg, B. 1998 A Practical Guide to Pseudospectral Methods. Cambridge University Press.Google Scholar
Fornberg, B. & Merrill, D. 1997 Comparison of finite difference- and pseudospectral methods for convective flow over a sphere. Geophys. Res. Lett. 24, 32453248.CrossRefGoogle Scholar
Frana, K., Stiller, J. & Grundmann, R. 2005 Taylor–Görtler in the flow driven by a rotating magnetic field in a cylindrical container. J. Visual. Japan 8, 323330.CrossRefGoogle Scholar
Giacobello, M. 2005 Wake structure behind a tranversely rotating sphere at moderate Reynolds numbers. PhD thesis, University of Melbourne.Google Scholar
Glaberson, W. I., Johnson, W. W. & Ostermeier, R. M. 1974 Instability of a vortex array in He II. Phys. Rev. Lett. 33, 11971200.CrossRefGoogle Scholar
Gorter, C. J. & Mellink, J. H. 1949 On the irreversible processes in liquid helium II. Physica 85, 285304.CrossRefGoogle Scholar
Green, A. E. & Naghdi, P. M. 1967 A theory of mixtures. Arch. Rat. Mech. Anal. 24, 243263.CrossRefGoogle Scholar
Hall, H. E. 1960 The rotation of liquid helium II. Adv. Phys. 9, 89146.CrossRefGoogle Scholar
Hall, H. E. & Vinen, W. F. 1956 a The rotation of liquid helium II. I. Experiments on the propagation of second sound in uniformly rotating helium. Proc. R. Soc. Lond. A 238, 204214.Google Scholar
Hall, H. E. & Vinen, W. F. 1956 b The rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium. Proc. R. Soc. Lond. A 238, 215234.Google Scholar
Henderson, K. & Barenghi, C. F. 1995 Numerical methods for two-fluid hydrodynamics: application to the Taylor vortex flow of superfluid helium II. J. Low Temp. Phys. 98, 351381.CrossRefGoogle Scholar
Henderson, K. L. & Barenghi, C. F. 2000 The anomalous motion of superfluid helium in a rotating cavity. J. Fluid Mech. 406, 199219.CrossRefGoogle Scholar
Henderson, K. L. & Barenghi, C. F. 2004 Superfluid Couette flow in an enclosed annulus. Theor. Comput. Fluid Dyn. 18, 183196.CrossRefGoogle Scholar
Henderson, K. L., Barenghi, C. F. & Jones, C. A. 1995 Nonlinear Taylor–Couette flow of helium II. J. Fluid Mech. 283, 329340.CrossRefGoogle Scholar
Hills, R. N. & Roberts, P. H. 1972 On Landau's two-fluid model for helium II. J. Inst. Maths Applics. 9, 5667.CrossRefGoogle Scholar
Hills, R. N. & Roberts, P. H. 1977 Superfluid mechanics for a high density of vortex lines. Arch. Rat. Mech. Anal. 66, 4371.CrossRefGoogle Scholar
Hobbs, G. 2002 Searches for and timing of radio pulsars. PhD thesis, University of Manchester.Google Scholar
Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E. & Jordan, C. 2004 Long-term timing observations of 374 pulsars. Mon. Not. R. Astron. Soc. 353, 13111344.CrossRefGoogle Scholar
Hollerbach, R. 2000 A spectral solution of the magneto-convection equations in spherical geometry. Intl J. Numer. Meth. Fluids 32, 773797.3.0.CO;2-P>CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program (SEE N89-24538 18-34), pp. 193–208.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jones, D. I. & Andersson, N. 2001 Freely precessing neutron stars: model and observations. Mon. Not. R. Astron. Soc. 324, 811824.CrossRefGoogle Scholar
Jones, D. I. & Andersson, N. 2002 Gravitational waves from freely precessing neutron stars. Mon. Not. R. Astron. Soc. 331, 203220.CrossRefGoogle Scholar
Jou, D. & Mongiovì, M. S. 2004 Phenomenological description of counterflow superfluid turbulence in rotating containers. Phys. Rev. B 69, 094513.CrossRefGoogle Scholar
Junk, M. & Egbers, C. 2000 Isothermal spherical Couette flow. Physics of Rotating Fluids. Lecture Notes in Physics, vol. 549, p. 215. Springer.CrossRefGoogle Scholar
Khalatnikov, I. M. 1965 Introduction to the Theory of Superfluidity. Benjamin, New York.Google Scholar
Khlebuytin, G. N. 1968 Stability of fluid motion between a rotating and a stationary concentric sphere. Fluid Dyn. 3, 3132.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1969 Mechanics, 2nd edn. Pergamon.Google Scholar
Link, B. 2003 Constraining hadronic superfluidity with neutron star precession. Phys. Rev. Lett. 91 (10), 101101.CrossRefGoogle ScholarPubMed
Liu, M., Blohm, C., Egbers, C., Wulf, P. & Rath, H. J. 1996 Taylor vortices in wide spherical shells. Phys. Rev. Lett. 77, 286289.CrossRefGoogle ScholarPubMed
Lorimer, D. R. & Kramer, M. 2004 Handbook of Pulsar Astronomy. Cambridge University Press.Google Scholar
Loukopoulos, V. C. & Karahalios, G. T. 2004 Taylor vortices in annular spherical flow at large aspect ratios. Phys. Fluids 16, 27082711.CrossRefGoogle Scholar
Lyne, A. G. & Graham-Smith, F. 2006 Pulsar Astronomy. Cambridge University Press.Google Scholar
Lyne, A. G., Shemar, S. L. & Smith, F. G. 2000 Statistical studies of pulsar glitches. Mon. Not. R. Astron. Soc. 315, 534542.CrossRefGoogle Scholar
Marcus, P. & Tuckerman, L. 1987 a Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech. 185, 130.CrossRefGoogle Scholar
Marcus, P. & Tuckerman, L. 1987 b Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech. 185, 3165.CrossRefGoogle Scholar
Mathieu, P., Marechal, J. C. & Simon, Y. 1980 Spatial distribution of vortices and metastable states in rotating He II. Phys. Rev. B 22, 42934306.CrossRefGoogle Scholar
Melatos, A. 1997 Spin-down of an oblique rotator with a current-starved outer magnetosphere. Mon. Not. R. Astron. Soc. 288, 10491059.CrossRefGoogle Scholar
Melatos, A., Peralta, C. & Wyithe, J. S. B. 2007 Avalanche dynamics of radio pulsar glitches. Astrophys. J. 672, 11031118.CrossRefGoogle Scholar
Merilees, P. E. 1973 The pseudospectral approximation to the shallow water equations on a sphere. Atmosphere 11, 1320.CrossRefGoogle Scholar
Metcalfe, R. W., Menon, S. & Hussain, A. K. M. F. 1985 Coherent structures in a turbulent mixing layer – a comparison between direct numerical simulations and experiments. In Symp. on Turbulent Shear Flows, 5th, Ithaca, NY, August 7–9, 1985, Proc. (A86-30201 13-34), University Park, PA, Pennsylvania State University, pp. 4.13–4.19. (ed. Dang, K. & Roy, P.).Google Scholar
Mittal, R. 1995 Study of flow past elliptic and circular cylinders using direct numerical simulation. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Mittal, R. 1999 A Fourier–Chebyshev spectral colloctation method for simulating flow past spheres and spheroids. Intl J. Numer. Meth. Fluids 30, 921937.3.0.CO;2-3>CrossRefGoogle Scholar
Mittal, R. & Balachandar, S. 1995 Generation of streamwise vortical structures in bluff body wakes. Phys. Rev. Lett. 75, 13001303.CrossRefGoogle ScholarPubMed
Munson, B. R. & Joseph, D. D. 1971 Viscous incompressible flow between concentric rotating spheres. Part 2. Hydrodynamic stability. J. Fluid Mech. 49, 305318.CrossRefGoogle Scholar
Nakabayashi, K. & Tsuchida, Y. 1988 Spectral study of the laminar–turbulent transition in spherical Couette flow. J. Fluid Mech. 194, 101132.CrossRefGoogle Scholar
Nakabayashi, K., Tsuchida, Y. & Zheng, Z. 2002 a Characteristics of disturbances in the laminar–turbulent transition of spherical Couette flow. 1. Spiral Taylor–Gortler vortices and traveling waves for narrow gaps. Phys. Fluids 14, 39633972.CrossRefGoogle Scholar
Nakabayashi, K., Zheng, Z. & Tsuchida, Y. 2002 b Characteristics of disturbances in the laminar–turbulent transition of spherical Couette flow. 2. New disturbances observed for a medium gap. Phys. Fluids 14, 39733982.CrossRefGoogle Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Northby, J. A. & Donnelly, R. J. 1970 Detection of a vortex-free region in rotating liquid helium II. Phys. Rev. Lett. 25, 214217.CrossRefGoogle Scholar
Orszag, S. A. 1971 a Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid Mech. 49, 75112.CrossRefGoogle Scholar
Orszag, S. A. 1971 b On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28, 10741074.2.0.CO;2>CrossRefGoogle Scholar
Orszag, S. A. 1974 Fourier series on spheres. Mon. Weather Rev. 102, 5675.2.0.CO;2>CrossRefGoogle Scholar
Orszag, S. A., Israeli, M. & Deville, M. O. 1986 Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75111.CrossRefGoogle Scholar
Ostriker, J. P. & Gunn, J. E. 1969 On the nature of pulsars. I. Theory. Astrophys. J. 157, 1395.CrossRefGoogle Scholar
Pearson, C. E. 1967 A numerical study of the time-dependent viscous flow between two rotating spheres. J. Fluid Mech. 28, 323336.CrossRefGoogle Scholar
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2005 Global three-dimensional flow of a neutron superfluid in a spherical shell in a neutron star. Astrophys. J. 635, 12241232.CrossRefGoogle Scholar
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2006 a Gravitational radiation from nonaxisymmetric spherical Couette flow in a neutron star. Astrophys. J., Lett. 644, L53L56.CrossRefGoogle Scholar
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2006 b Transitions between turbulent and laminar superfluid vorticity states in the outer core of a neutron star. Astrophys. J. 651, 10791091.CrossRefGoogle Scholar
Peralta, C., Melatos, A., Giacobello, M. & Ooi, A. 2007 Deceleration of rotating superfluid in a spherical vessel: patches of turbulent-laminar vorticity. Phys. Fluids (to be submitted).Google Scholar
Peralta, C. A. 2006 Superfluid spherical Couette flow and rotational irregularities in pulsars. PhD thesis, University of Melbourne.Google Scholar
Proudman, I. 1956 The almost-rigid rotation of viscous fluid between concentric spheres. J. Fluid Mech. 1, 505516.CrossRefGoogle Scholar
Reppy, J. D. 1965 Application of a superfluid gyroscope to the study of critical velocities in liquid helium near the λ transition. Phys. Rev. Lett. 14, 733735.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Scott, D. M., Finger, M. H. & Wilson, C. A. 2003 Characterization of the timing noise of the Crab pulsar. Mon. Not. R. Astron. Soc. 344, 412430.CrossRefGoogle Scholar
Sedrakian, A. 2005 Type-I superconductivity and neutron star precession. Phys. Rev. D 71 (8), 083003.Google Scholar
Shaham, J. 1977 Free precession of neutron stars – role of possible vortex pinning. Astrophys. J. 214, 251260.CrossRefGoogle Scholar
Shaham, J. 1986 Free precession in quasi-periodic oscillators. Astrophys. J. 310, 780785.CrossRefGoogle Scholar
Shemar, S. L. & Lyne, A. G. 1996 Observations of pulsar glitches. Mon. Not. R. Astron. Soc. 282, 677690.CrossRefGoogle Scholar
Sonin, E. B. 1987 Vortex oscillations and hydrodynamics of rotating superfluids. Rev. Mod. Phys. 59, 87155.CrossRefGoogle Scholar
Soria, J. & Cantwell, B. J. 1994 Topological visualisation of focal structures in free shear flows. Appl. Sci. Res. 53, 375.CrossRefGoogle Scholar
Spitkovsky, A. 2004 Electrodynamics of pulsar magnetospheres. In IAU Symp. (ed. Camilo, F. & Gaensler, B. M.), p. 357.Google Scholar
Stauffer, D. & Fetter, A. L. 1968 Distribution of vortices in rotating helium II. Phys. Rev. 168, 156159.CrossRefGoogle Scholar
Streett, C. L. & Hussaini, M. Y. 1991 A numerical simulation of the appearance of chaos in finite-length Taylor–Couette flow. Appl. Numer. Math. 7, 4171.CrossRefGoogle Scholar
Swanson, C. E., Barenghi, C. F. & Donnelly, R. J. 1983 Rotation of a tangle of quantized vortex lines in He II. Phys. Rev. Lett. 50, 190193.CrossRefGoogle Scholar
Swanson, C. J. 1998 Taylor–Couette flow of helium II. Intl J. Engng Sci. 36, 14811492.CrossRefGoogle Scholar
Swarztrauber, P. N. 1979 On the spectral approximation of discrete scalar and vector functions on the sphere. SIAM J. Numer. Anal. 16, 934949.CrossRefGoogle Scholar
Trefethen, L. N. 2001 Spectral Methods in Matlab. SIAM.Google Scholar
Tsakadze, D. S. & Tsakadze, S. D. 1973 Measurement of the relaxation time on acceleration of vessels with helium II and superfluidity in pulsars. Sov. Phys., J. Exp. Theor. Phys. 64, 18161823.Google Scholar
Tsakadze, D. S. & Tsakadze, S. D. 1975 Superfluidity in pulsars. Sov. Phys. Uspekhi 115, 503519.Google Scholar
Tsakadze, J. S. & Tsakadze, S. J. 1972 Relaxation phenomena at accelaration of rotation of a spherical vessel with helium II and relaxation in pulsars. Phys. Lett. A 41, 197199.CrossRefGoogle Scholar
Tsakadze, J. S. & Tsakadze, S. J. 1974 On the problem of relaxation time determination in superfluids when their rotation is accelerated. Phys. Lett. A 47, 477478.CrossRefGoogle Scholar
Tsakadze, J. S. & Tsakadze, S. J. 1980 Properties of slowly rotating helium II and the superfluidity of pulsars. J. Low Temp. Phys. 39, 649688.CrossRefGoogle Scholar
Tsubota, M., Araki, T. & Barenghi, C. F. 2003 Rotating superfluid turbulence. Phys. Rev. Lett. 90 (20, 205301.CrossRefGoogle ScholarPubMed
Umscheid, L. & Sankar Rao, M. 1971 Further test of a grid system for global numerical prediction. Mon. Weather Rev. 99, 686690.2.3.CO;2>CrossRefGoogle Scholar
Vinen, W. F. 1957 a Mutual friction in a heat current in liquid helium II. I. Experiments on steady heat currents. Proc. R. Soc. Lond. A 240, 114127.Google Scholar
Vinen, W. F. 1957 b Mutual friction in a heat current in liquid helium II. II. Experiments on trasient effects Proc. R. Soc. Lond. A 240, 128143.Google Scholar
Vinen, W. F. 1957 c Mutual friction in a heat current in liquid helium II. III. Theory of mutual friction Proc. R. Soc. Lond. A 242, 493515.Google Scholar
Voigt, R. G., Gottlieb, D. & Hussaini, M. Y. 1984 Spectral Methods for Partial Differential Equations. SIAM.Google Scholar
Yavorskaya, I. M., Belayev, Yu. N. & Monakhov, A. A. 1986 Hydrodynamical Stability in rotating spherical layers – application to dynamics of planetary-atmospheres. Acta Astronaut. 13, 433440.CrossRefGoogle Scholar
Yee, Y. K. 1981 Solution of Poisson's equation on a sphere by truncated double Fourier series. Mon. Weather Rev. 109, 501505.2.0.CO;2>CrossRefGoogle Scholar