Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-09-21T22:42:09.683Z Has data issue: false hasContentIssue false

Symmetry groups and invariant solutions of plane Poiseuille flow

Published online by Cambridge University Press:  18 September 2025

Pratik P. Aghor*
Affiliation:
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
John F. Gibson
Affiliation:
Integrated Applied Mathematics Program, Department of Mathematics & Statistics, University of New Hampshire, Durham, NH, USA
*
Corresponding author: Pratik P. Aghor, paghor3@gatech.edu

Abstract

Equilibrium, travelling-wave and periodic-orbit solutions of the Navier–Stokes equations provide a promising avenue for investigating the structure, dynamics and statistics of transitional flows. Many such invariant solutions have been computed for wall-bounded shear flows, including plane Couette, plane Poiseuille and pipe flow. However, the organisation of invariant solutions is not well understood. In this paper we focus on the role of symmetries in the organisation and computation of invariant solutions of plane Poiseuille flow. We show that enforcing symmetries while computing invariant solutions increases the efficiency of the numerical methods, and that redundancies between search spaces can be eliminated by consideration of equivalence relations between symmetry subgroups. We determine all symmetry subgroups of plane Poiseuille flow in a doubly periodic domain up to translations by half the periodic lengths and classify the subgroups into equivalence classes, each of which represents a physically distinct set of symmetries and an associated set of physically distinct invariant solutions. We calculate fifteen new travelling waves of plane Poiseuille flow in seven distinct symmetry groups and discuss their relevance to the dynamics of transitional turbulence. We present a few examples of subgroups with fractional shifts other than half the periodic lengths and one travelling-wave solution whose symmetry involves shifts by one third of the periodic lengths. We conclude with a discussion and some open questions about the role of symmetry in the behaviour of shear flows.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.CrossRefGoogle ScholarPubMed
Barkley, D. 2016 Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1.10.1017/jfm.2016.465CrossRefGoogle Scholar
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V.B. 2017 Julia: a fresh approach to numerical computing. SIAM Rev. 59 (1), 6598.10.1137/141000671CrossRefGoogle Scholar
Budanur, N.B., Short, K.Y., Farazmand, M., Willis, A.P. & Cvitanović, P. 2017, Relative periodic orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 833, 274301.10.1017/jfm.2017.699CrossRefGoogle Scholar
Clever, R.M. & Busse, F.H. 1992 Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech. 234, 511527.CrossRefGoogle Scholar
Clever, R.M. & Busse, F.H. 1997 Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech. 344, 137153.10.1017/S0022112097005818CrossRefGoogle Scholar
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G., Whelan, N. & Wirzba, A. 2005 Chaos: classical and quantum. ChaosBook. org (Niels Bohr Institute, Copenhagen 2005) 69, 25.Google Scholar
Cvitanović, P. & Eckhardt, B. 1989 Periodic-orbit quantization of chaotic systems. Phys. Rev. Lett. 63 (8), 823.CrossRefGoogle ScholarPubMed
Cvitanovic, P. & Eckhardt, B. 1993 Symmetry decomposition of chaotic dynamics. Nonlinearity 6 (2), 277.CrossRefGoogle Scholar
Cvitanović, P. & Gibson, J.F. 2010 Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Phys. Scripta 2010 (T142), 014007.CrossRefGoogle Scholar
Daly, C.A., Schneider, T.M., Schlatter, P. & Peake, N. 2014 Secondary instability and tertiary states in rotating plane Couette flow. J. Fluid Mech. 761, 2761.10.1017/jfm.2014.609CrossRefGoogle Scholar
Duguet, Y., Willis, A.P. & Kerswell, R.R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.10.1017/S0022112008003248CrossRefGoogle Scholar
Ehrenstein, U. & Koch, W. 1991 Three-dimensional wavelike equilibrium states in plane Poiseuille flow. J. Fluid Mech. 228, 111148.10.1017/S0022112091002653CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91 (22), 224502.CrossRefGoogle ScholarPubMed
Gibson, J.F. & Brand, E. 2014 Spanwise-localized solutions of planar shear flows. J. Fluid Mech. 745, 2561.CrossRefGoogle Scholar
Gibson, J.F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech.. 611, 107130.10.1017/S002211200800267XCrossRefGoogle Scholar
Gibson, J.F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.CrossRefGoogle Scholar
Gibson, J.F., et al. 2024 Channelflow 2.0: a software system for Navier–Stokes in channel geometries. manuscript in preparation.Google Scholar
Gomé, S., Rivière, A., Tuckerman, L.S. & Barkley, D. 2024 Phase transition to turbulence via moving fronts. Phys. Rev. Lett. 132 (26), 264002.10.1103/PhysRevLett.132.264002CrossRefGoogle ScholarPubMed
Graham, M.D. & Floryan, D. 2021 Exact coherent states and the nonlinear dynamics of wall-bounded turbulent flows. Annu. Rev. Fluid Mech. 53, 227253.10.1146/annurev-fluid-051820-020223CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.10.1017/S0022112091002033CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.10.1017/S0022112001006243CrossRefGoogle Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Nagata, M. & Deguchi, K. 2013 Mirror-symmetric exact coherent states in plane Poiseuille flow. J. Fluid Mech. 735, R4.10.1017/jfm.2013.515CrossRefGoogle Scholar
Paranjape, C.S., Duguet, Y. & Hof, B. 2020 Oblique stripe solutions of channel flow. J. Fluid Mech. 897, A7.CrossRefGoogle Scholar
Park, J.S. & Graham, M.D. 2015 Exact coherent states and connections to turbulent dynamics in minimal channel flow. J. Fluid Mech. 782, 430454.Google Scholar
Rudge, J.F. & McKenzie, D. 2024 A crystallographic approach to symmetry-breaking in fluid layers. J. Fluid Mech. 989, A2.CrossRefGoogle Scholar
Sakurai, J.J. & Napolitano, J. 2020 Modern Quantum Mechanics. Cambridge University Press.10.1017/9781108587280CrossRefGoogle Scholar
Schneider, T.M., Gibson, J.F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501.10.1103/PhysRevLett.104.104501CrossRefGoogle ScholarPubMed
Shih, H.-Y., Hsieh, T.-L. & Goldenfeld, N. 2016 Ecological collapse and the emergence of travelling waves at the onset of shear turbulence. Nat. Phys. 12 (3), 245248.10.1038/nphys3548CrossRefGoogle Scholar
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.10.1017/S0022112003003768CrossRefGoogle Scholar
Tuckerman, L.S. & Barkley, D. 2011 Patterns and dynamics in transitional plane Couette flow. Phys. Fluids 23, 041301.CrossRefGoogle Scholar
Tuckerman, L.S., Chantry, M. & Barkley, D. 2020 Patterns in wall-bounded shear flows. Annu. Rev. Fluid Mech. 52 (1), 343367.CrossRefGoogle Scholar
Tuckerman, L.S., Kreilos, T., Schrobsdorff, H., Schneider, T.M. & Gibson, J.F. 2014 Turbulent-laminar patterns in plane Poiseuille flow. Phys. Fluids 26, 114103.CrossRefGoogle Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.10.1017/S0022112007005459CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.10.1063/1.869185CrossRefGoogle Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81 (19), 4140.10.1103/PhysRevLett.81.4140CrossRefGoogle Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.CrossRefGoogle Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15 (6), 15171534.10.1063/1.1566753CrossRefGoogle Scholar
Wang, X., Shih, H.-Y. & Goldenfeld, N. 2022 Stochastic model for quasi-one-dimensional transitional turbulence with streamwise shear interactions. Phys. Rev. Lett. 129 (3), 034501.CrossRefGoogle ScholarPubMed
Wedin, H. & Kerswell, R.R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.10.1017/S0022112004009346CrossRefGoogle Scholar
Willis, A.P. 2017 The Openpipeflow Navier–Stokes solver. SoftwareX 6, 124127.10.1016/j.softx.2017.05.003CrossRefGoogle Scholar
Willis, A.P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514540.10.1017/jfm.2013.75CrossRefGoogle Scholar
Zammert, S. & Eckhardt, B. 2015 Crisis bifurcations in plane Poiseuille flow. Phys. Rev. E 91 (4), 041003.10.1103/PhysRevE.91.041003CrossRefGoogle ScholarPubMed