Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T19:40:29.313Z Has data issue: false hasContentIssue false

Symmetry-breaking bifurcations and hysteresis in compressible Taylor–Couette flow of a dense gas: a molecular dynamics study

Published online by Cambridge University Press:  08 September 2020

Nandu Gopan
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore560064, India Amrita Vishwa Vidyapeetham, Amritanagar P.O., Coimbatore641112, India
Meheboob Alam*
Affiliation:
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore560064, India
*
Email address for correspondence: meheboob@jncasr.ac.in

Abstract

Molecular dynamics simulations with a repulsive Lennard-Jones potential are employed to understand the bifurcation scenario and the resulting patterns in compressible Taylor–Couette flow of a dense gas, with the inner cylinder rotating ($\omega _i>0$) and the outer one at rest ($\omega _o=0$). The steady-state flow patterns are presented in terms of a phase diagram in the ($\omega _i,\varGamma$) plane, where $\varGamma =h/\delta$ is the aspect ratio, $h$ is the height of the cylinders and $\delta =R_o-R_i$ is the gap between the outer and inner cylinders, and the underlying bifurcation scenario is analysed as a function of $\omega _i$ for different $\varGamma$. Considerable density stratification is found along both radial and axial directions in the Taylor-vortex regime of a dense gas, which makes the present system fundamentally different from its incompressible analogue. In the circular Couette flow regime, the stratifications remain small and the predicted critical Reynolds number for the onset of Taylor vortices matches well with that of its incompressible counterpart. The emergence of asymmetric Taylor vortices at $\varGamma >1$ is found to occur via saddle-node bifurcations, resulting in hysteresis loops in the bifurcation diagrams that are characterized in terms of the net circulation or the maximum radial velocity or the axial density contrast as order parameters. For $\varGamma \leq 1$ with reflecting axial boundary conditions, the primary bifurcation yields a single-vortex state which is connected to a two-roll branch via saddle-node bifurcations; however, changing to stationary (no-slip) endwalls yields a new state, which consists of two large symmetric vortices near the inner cylinder coexisting with an irregular pattern near the stationary outer cylinder. It is shown that the endwall conditions and the fluid compressibility play crucial roles on the genesis of asymmetric and stratified vortices and the related multiplicity of states in the Taylor-vortex regime of a dense gas.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aghor, P. & Alam, M. 2020 Nonlinear axisymmetric Taylor–Couette flow in a dilute gas: multi-roll transition and the role of compressibility. J. Fluid Mech. (submitted).Google Scholar
Ahrens, J., Geveci, B. & Law, C. 2005 Paraview: an end-user tool for large data visualization. In The Visualization Handbook (ed. C. D. Hansen & C. R. Johnson), pp. 717–731. Elsevier.CrossRefGoogle Scholar
Andereck, C. D., Liu, S. S. & Swinney, H. L 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.CrossRefGoogle Scholar
Benjamin, T. B. 1978 a Bifurcation phenomena in steady flows of a viscous fluid. I. Theory. Proc. R. Soc. Lond. A 359, 126.Google Scholar
Benjamin, T. B. 1978 b Bifurcation phenomena in steady flows of a viscous fluid. II. Experiments. Proc. R. Soc. Lond. A 359, 2743.Google Scholar
Benjamin, T. B. & Mullin, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377, 221249.Google Scholar
Brilliantov, N. V. & Pöschel, T. 2004 Kinetic Theory of Granular Gases. Oxford University Press.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-uniform Gases. Cambridge University Press.Google Scholar
Cliffe, K. A. 1983 Numerical calculations of two-cell and single-cell Taylor flows. J. Fluid Mech. 135, 219230.CrossRefGoogle Scholar
Cole, J. A. 1976 Taylor-vortex instability and annulus-length effects. J. Fluid Mech. 75, 115.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21 (3), 385425.CrossRefGoogle Scholar
Conway, S. L., Shinbrot, T. & Glasser, B. J. 2004 A Taylor vortex analogy in granular flows. Nature 431 (7007), 433435.CrossRefGoogle Scholar
Couette, M. M. 1888 Sur un nouvel appareil pour l'etude du frottement des fluids. Comptes Rend. 107, 388390.Google Scholar
Furukawa, H., Watanabe, T., Toya, Y. & Nakamura, I. 2002 Flow pattern exchange in the Taylor–Couette system with a very small aspect ratio. Phys. Rev. E 65, 036306.CrossRefGoogle ScholarPubMed
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267295.CrossRefGoogle Scholar
Golubitsky, M. & Schaeffer, D. G. 1985 Singularities and Groups in Bifurcation Theory. Springer.CrossRefGoogle Scholar
Hirshfeld, D. & Rapaport, D. C. 1998 Molecular dynamics simulation of Taylor–Couette vortex formation. Phys. Rev. Lett. 80, 53375340.CrossRefGoogle Scholar
Hirshfeld, D. & Rapaport, D. C. 2000 Growth of Taylor vortices: a molecular dynamics study. Phys. Rev. E 61, R21.CrossRefGoogle ScholarPubMed
Huisman, S. G., van Der Veen, R. C. A., Sun, C. & Lohse, D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5, 3820.CrossRefGoogle ScholarPubMed
Jackson, R. 2000 Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jones, C. A. 1982 On flow between counter-rotating cylinders. J. Fluid Mech. 120, 433450.CrossRefGoogle Scholar
Kao, K. H. & Chow, C.-Y. 1992 Linear stability of compressible Taylor–Couette flow. Phys. Fluids 4, 994996.CrossRefGoogle Scholar
Krishnaraj, K. P. & Nott, P. R. 2016 A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly. Nat. Commun. 7, 10630.CrossRefGoogle ScholarPubMed
Lücke, M., Mihelcic, M., Wingerath, K. & Pfister, G. 1984 Flow in a small annulus between concentric cylinders. J. Fluid Mech. 140, 343453.CrossRefGoogle Scholar
Mahajan, A. 2016 Two problems in driven granular matter: Poiseuille and Taylor–Couette flows. Master's thesis, GrainLab, JNCASR, Bangalore, India.Google Scholar
Mahajan, A. & Alam, M. 2016 Vortices and particle banding in granular Taylor–Couette flow. In Bulletin of American Physical Society (69th DFD Meeting, 20–22 November, 2016, Portland, USA), vol. 61, no. 20, p. D.30.010.Google Scholar
Majji, M. V., Banerjee, S. & Morris, J. F. 2018 Inertial flow transitions of a suspension in Taylor–Couette geometry. J. Fluid Mech. 835, 936969.CrossRefGoogle Scholar
Mallock, A. 1888 Determination of the viscosity of water. Proc. R. Soc. Lond. A 45, 126132.Google Scholar
Manela, A. & Frankel, I. 2007 On compressible Taylor–Couette problem. J. Fluid Mech. 588, 5974.CrossRefGoogle Scholar
Mullin, T. & Blohm, C. 2001 Bifurcation phenomena in a Taylor–Couette flow with asymmetric boundary conditions. Phys. Fluids 13, 136140.CrossRefGoogle Scholar
Mullin, T., Toya, Y. & Tavener, S. 2002 Symmetry breaking and multiplicity of states in small aspect ratio Taylor–Couette flow. Phys. Fluids 14, 27782787.CrossRefGoogle Scholar
Nakamura, I., Toya, Y., Yamashita, S. & Ueki, Y 1989 An experiment on a Taylor vortex flow in a gap with a small aspect ratio: instability of Taylor vortex flows. JSME Intl J. 32 (3), 388394.Google Scholar
Pfister, G., Schmidt, H., Cliffe, K. A. & Mullin, T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.CrossRefGoogle Scholar
Plimpton, S. 1995 Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119.CrossRefGoogle Scholar
Ramesh, P. & Alam, M. 2020 Interpenetrating spirals and other co-existing states in suspension Taylor–Couette flow. Phys. Rev. Fluids 5, 042301(R).CrossRefGoogle Scholar
Ramesh, P., Bharadwaj, S. & Alam, M. 2019 Suspension Taylor–Couette flow: coexistence of stationary and travelling waves, and the characteristics of Taylor vortices and spirals. J. Fluid Mech. 870, 901940.CrossRefGoogle Scholar
Rapaport, D. C. 1998 Sunharmonic surface waves in vibrated granular media. Physica A 249, 232238.CrossRefGoogle Scholar
Rapaport, D. C. 2004 The Art of Molecular Dynamics Simulation. Cambridge University Press.CrossRefGoogle Scholar
Rayleigh, Lord 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148153.Google Scholar
Saha, S. & Alam, M. 2016 Normal-stress differences, their origin and constitutive relations for a sheared granular fluid. J. Fluid Mech. 795, 549580.CrossRefGoogle Scholar
Saha, S. & Alam, M. 2017 Revisiting ignited-quenched transition and the non-Newtonian rheology of a dilute sheared gas-solid suspension. J. Fluid Mech. 833, 206246.CrossRefGoogle Scholar
Savage, S. B. 1988 Streaming motion in a bed of vibrationally fluidised dry granular material. J. Fluid Mech. 194, 457478.CrossRefGoogle Scholar
Schaeffer, D. G. 1980 Analysis of a model in the Taylor problem. Math. Proc. Camb. Phil. Soc. 87, 307337.CrossRefGoogle Scholar
Sparrow, E. M., Munro, W. D. & Jonsson, V. K. 1964 Instability of the flow between rotating cylinders: the wide-gap problem. J. Fluid Mech. 20, 3546.CrossRefGoogle Scholar
Stefanov, S. & Cercignani, C. 1993 Monte-Carlo simulation of the Taylor–Couette flow of a rarefied gas. J. Fluid Mech. 256, 199213.CrossRefGoogle Scholar
Tavener, S. J., Mullin, T. & Cliffe, K. A. 1991 Novel bifurcation phenomena in a rotating annulus. J. Fluid Mech. 229, 483499.CrossRefGoogle Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Trevelyan, D. J. & Zaki, T. A. 2016 Taylor vortices in molecular dynamics simulation of cylindrical Couette flow. Phys. Rev. E 94, 043107.CrossRefGoogle Scholar
Welsh, S., Kersal'e, E. & Jones, C. A. 2014 Compressible Taylor–Couette flow – instability mechanism and codimension-3 points. J. Fluid Mech. 750, 555577.CrossRefGoogle Scholar
Yoshida, H. & Aoki, K. 2006 Linear stability of the cylindrical Couette flow of a rarefied gas. Phys. Rev. E 73, 021201.CrossRefGoogle ScholarPubMed