Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T06:22:39.916Z Has data issue: false hasContentIssue false

Tank-treading as a means of propulsion in viscous shear flows

Published online by Cambridge University Press:  18 May 2011

PIERO OLLA*
Affiliation:
ISAC-CNR, Sezione di Cagliari, I-09042 Monserrato, Italy INFN, Sezione di Cagliari, I-09042 Monserrato, Italy
*
Email address for correspondence: olla@dsf.unica.it

Abstract

The use of tank-treading as a means of propulsion for microswimmers in viscous shear flows is taken into account. We discuss the possibility of a vesicle to control the drift in an external shear flow, by locally varying the bending rigidity of its membrane. By analytical calculation in the quasi-spherical limit, the stationary shape and the orientation of the tank-treading vesicle in the external flow are determined, working to lowest order in the membrane inhomogeneity. The membrane inhomogeneity acts in the shape evolution equation as an additional force term, which can be used to balance the effect of the hydrodynamic stresses, thus allowing the vesicle to assume shapes and orientations that are impossible otherwise. The vesicle shapes and orientations required for migration transverse to the flow, together with the bending rigidity profiles leading to such shapes and orientations, are determined. Considering the variations in the concentration experienced during tank-treading, a simple model is presented, in which a vesicle is able to migrate up or down the gradient of a concentration field by stiffening or softening of its membrane.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abkarian, M., Lartigue, C. & Viallat, A. 2002 Tank-treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88, 068103.CrossRefGoogle ScholarPubMed
Avron, J. E., Kenneth, O. & Oaknin, D. K. 2005 Pushmepullyou: an efficient microswimmer. New J. Phys. 7, 234242.CrossRefGoogle Scholar
Barthes-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100, 831853.CrossRefGoogle Scholar
Behkam, B. & Sitti, M. 2006 Design methodology for biomimetic propulsion of miniature swimming robots. J. Dyn. Sys. Meas. Control 128, 3643.CrossRefGoogle Scholar
Berg, H. C. 1976 How spirochetes may swim. J. Theor. Biol. 56, 269273.CrossRefGoogle ScholarPubMed
Berg, H. C. 2004 E. Coli in Motion. Springer.CrossRefGoogle Scholar
Blake, R. J. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.CrossRefGoogle Scholar
Blake, R. J. & Sleigh, M. A. 1974 Mechanics of ciliary locomotion. Biol. Rev. Camb. Phil. Soc. 49, 85125.CrossRefGoogle ScholarPubMed
Blum, J. J. & Hines, M. 1979 Biophysics of flagellar motility. Q. Rev. Biophys. 12, 103180.CrossRefGoogle ScholarPubMed
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
Coupier, G., Kaoui, B., Podgorski, T. & Misbah, C. 2008 Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20, 111702.CrossRefGoogle Scholar
Danker, G., Vlahovska, P. M. & Misbah, C. 2009 Vesicles in Poiseuille flows. Phys. Rev. Lett. 102, 148102.CrossRefGoogle Scholar
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. & Bibette, J. 2005 Microscopic artificial swimmers. Nature 437, 862865.CrossRefGoogle ScholarPubMed
Ehlers, K. M., Samuel, A. D., Berg, H. C. & Montgomery, R. 1996 Do cyanobacteria swim using traveling surface waves? Proc. Natl Acad. Sci. USA 93, 83408343.CrossRefGoogle ScholarPubMed
Farutin, A., Biben, T. & Misbah, C. 2010 Analytical progress in the theory of vesicles under linear flow. Phys. Rev. E 81, 061904.Google ScholarPubMed
Furtado, K., Pooley, C. M. & Yeomans, J. M. 2008 Lattice Boltzmann study of convective drop motion driven by nonlinear chemical kinetics. Phys. Rev. E 78, 046308.CrossRefGoogle ScholarPubMed
Golestanian, R. & Ajdari, A. 2008 Analytic results for the three-sphere swimmer a low Reynolds numbers. Phys. Rev. E 77, 036308.CrossRefGoogle Scholar
Golestanian, R. & Ajdari, A. 2009 Stochastic low Reynolds number swimmers. J. Phys.: Condens. Matter 21, 204104.Google ScholarPubMed
Golestanian, R., Liverpool, T. D. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801.CrossRefGoogle ScholarPubMed
Goulian, M., Bruinsma, R. & Pincus, P. 1993 Long-range forces in heterogeneous membranes. Europhys. Lett. 22, 145150.CrossRefGoogle Scholar
Hanna, J. A. & Vlahovska, P. M. 2001 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22, 013102.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Kluwer.Google Scholar
Ishikawa, T. & Pedley, T. J. 2008 Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100, 088103.CrossRefGoogle ScholarPubMed
Jenkins, J. T. 1977 The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32, 755764.Google Scholar
Kitahata, H., Aihara, R., Magome, N. & Yoshikawa, K. 2002 Convective and periodic motion driven by a chemical wave. J. Chem. Phys. 116, 56665672.Google Scholar
Kraus, M., Wintz, W., Seifert, U. & Lipowsky, R. 1996 Fluid vesicles in shear flow. Phys. Rev. Lett. 77, 36853688.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Lebedev, V. V., Turitsyn, K. S. & Vergeles, S. S. 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101.CrossRefGoogle Scholar
Leoni, M., Kotar, J., Bassetti, B., Cicuta, P. & Lagomarsino, M. C. 2009 A basic swimmer at low Reynolds number. Soft Matter 5, 472476.CrossRefGoogle Scholar
Leshansky, A. M. & Kenneth, O. 2008 Surface tank-treading propulsion of Purcell's toroidal swimmer. Phys. Fluids 20, 063104.Google Scholar
Lighthill, J. 1957 Mathematical Biofluiddynamics. SIAM.Google Scholar
Lighthill, M. J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5, 109118.CrossRefGoogle Scholar
Lobaskin, V., Lobaskin, D. & Kulic, I. M. 2008 Brownian dynamics of a microswimmer. Eur. Phys. J. (Special Topics) 157, 149156.Google Scholar
Najafi, A. & Golestanian, R. 2004 Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69, 062901.CrossRefGoogle ScholarPubMed
Nardi, J., Bruinsma, R. & Sackmann, E. 1999 Vesicles as osmotic motors. Phys. Rev. Lett. 82, 51685171.Google Scholar
Noguchi, H. & Gompper, G. 2007 Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98, 128103.Google Scholar
Olla, P. 1997 The lift on a tank-treading ellipsoidal cell in a bounded shear flow. J. Phys. II France 7, 15331540.Google Scholar
Olla, P. 2000 The behavior of closed inextensible membranes in linear and quadratic shear flows. Physica A 278, 87106.Google Scholar
Olla, P. 2010 Passive swimming in low Reynolds number flows. Phys. Rev. E 82, 015302(R).Google Scholar
Paxton, W. E., Sundararajan, S., Mallouk, T. E. & Sen, A. 2006 Chemical locomotion. Angew. Chem. Intl Ed. Engl. 45, 54205429.CrossRefGoogle ScholarPubMed
Pooley, C. M. & Balazs, A. C. 2007 Producing swimmers by coupling reaction–diffusion equations to a chemically responsive material. Phys. Rev. E 76, 016308.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2003 Modelling and Simulation of Capsules and Biological Cells. Chapman & Hall.CrossRefGoogle Scholar
Purcell, E. M. 1977 Life at low Reynolds numbers. Am. J. Phys. 45, 311.Google Scholar
Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasi-spherical vesicles in shear flows. Eur. Phys. J. B 8, 405415.CrossRefGoogle Scholar
Shapere, A. & Wilczek, F. 1989 Geometry of self-propulsion at low Reynolds numbers. J. Fluid Mech. 198, 557585.CrossRefGoogle Scholar
Skotheim, J. M. & Secomb, T. W. 2007 Red blood cells and other non-spherical capsules in shear flow: oscillatory dynamics and the tank-treading to tumbling transition. Phys. Rev. Lett. 98, 078301.CrossRefGoogle Scholar
Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distorsions. Phys. Rev. Lett. 77, 41024105.Google Scholar
Subramanian, R. S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge.Google Scholar
Sukumaran, S. & Seifert, U. 2001 Influence of shear flow on vesicles near a wall: a numerical study. Phys. Rev. E 64, 011916.Google Scholar
Tierno, P., Golestanian, R., Pagonabarraga, I. & Sagués, F. 2008 Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett. 101, 218304.Google Scholar
Vand, V. 1948 Viscosity of solutions and suspensions. I. Theory. J. Phys. Chem. 52, 277299.CrossRefGoogle Scholar
Watari, N. & Larson, R. G. 2009 Shear-induced migration of particles with anisotropic rigidity. Phys. Rev. Lett. 102, 246001.Google Scholar
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350356.CrossRefGoogle Scholar
Yu, T. S., Lauga, E. & Hosoi, A. E. 2006 Experimental investigations of elastic tail propulsion at low Reynolds number. Phys. Fluids 18, 091701.Google Scholar
Zhong-can, O.-Y. & Helfrich, W. 1989 Bending energy of vesicle membranes: general expressions of the first, second and third variation of the shape energy and application to spheres and cylinders. Phys. Rev. A 39, 52805288.CrossRefGoogle ScholarPubMed