Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T06:07:35.271Z Has data issue: false hasContentIssue false

The Taylor internal structure of weak shock waves

Published online by Cambridge University Press:  21 April 2006

D. G. Crighton
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Abstract

G. I. Taylor's solution in 1910 for the interior structure of a weak shock wave is, with appropriate generalization, an essential component of weak-shock theory. The Taylor balance between nonlinear convection and thermoviscous diffusion is, however, endangered when other linear mechanisms - such as density stratification, geometrical spreading effects, tube wall attenuation and dispersion, etc. - are included. The ways in which some of these linear mechanisms cause the Taylor shock structure to break down when a weak shock has propagated over a large (and in some cases quite moderate) distance will be studied. Different forms of breakdown of the Taylor shock structure will be identified, both for quadratic (gasdynamic) nonlinearity and also for cubic nonlinearity appropriate to transverse waves in solid media or electromagnetic waves in nonlinear dielectrics. From this a description will be given of the fate of a nonlinear wave containing a pattern of weak shock waves, as it propagates over large ranges under the influence of linear and nonlinear mechanisms.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. & Davies, R. M. (eds.) 1956 Surveys in Mechanics. The G. I. Taylor 70th Anniversary Volume. Cambridge University Press.
Cramer, M. S. & Kluwick, A. 1984 J. Fluid Mech. 142, 937.
Crighton, D. G. 1979 Ann. Rev. Fluid Mech. 11, 1133.
Crighton, D. G. 1986 Basic theoretical nonlinear acoustics. In Frontiers in Physical Acoustics (ed. D. Sette), pp. 152. North Holland.
Crighton, D. G. & Scott, J. F. 1979 Phil. Trans. R. Soc. Lond. A 292, 101134.
Enflo, B. O. 1981 J. Acoust. Soc. Am. 70, 14211423.
Enflo, B. O. 1985a J. Acoust. Soc. Am. 77, 5460.
Enflo, B. O. 1985b AIAA J. 23, 18241826.
Fay, R. D. 1931 J. Acoust. Soc. Am. 3, 222241.
Gorschkov, K. A., Ostrovsky, L. A. & Pelinovsky, E. N. 1974 Proc. IEEE 62, 15111517.
Lee-Bapty, I. P. & Crighton, D. G. 1986a Nonlinear wave motion governed by the Modified Burgers equation. Phil. Trans. R. Soc. Lond. (to appear).Google Scholar
Lee-Bapty, I. P. & Crighton, D. G. 1986b Propagation of nonlinear sinusoidal waves in a dissipative stratified atmosphere. Proc. R. Soc. Lond. (to be submitted).Google Scholar
Leibovich, S. & Seebass, A. R. (eds.) 1974 Nonlinear Waves. Cornell University Press.
Lighthill, M. J. 1956 In Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies), pp. 250351. Cambridge University Press.
Nariboli, G. A. & Lin, W. C. 1973 Z. angew. Math. Mech. 53, 505510.
Naugol'Nykh, K. A.1973 Sov. Phys. Acoust. 18, 475477.
Nimmo, J. J. C. & Crighton, D. G. 1982 Proc. R. Soc. Lond. A 384, 381401.
Nimmo, J. J. C. & Crighton, D. G. 1986 Geometrical and diffusive effects in nonlinear acoustic propagation over long ranges. Phil. Trans. R. Soc. Lond. A 320, 135.Google Scholar
Rudenko, O. V. & Soluyan, S. I. 1977 Theoretical Foundations of Nonlinear Acoustics (English translation by R. T. Beyer). New York: Consultants Bureau (Plenum).
Sachdev, P. L. & Seebass, A. R. 1973 J. Fluid Mech 58, 197205.
Sachdev, P. L., Tikekar, V. G. & Nair, K. R. C. 1986 Evolution and decay of spherical and cylindrical. N-waves. J. Fluid Mech. 172, 347371.Google Scholar
Scott, J. F. 1981a Proc. R. Soc. Lond. A 373, 443456.
Scott, J. F. 1981b Proc. R. Soc. Lond. A 375, 211230.
Sugimoto, N., Yamane, Y. & Kakutani, T. 1982 In Nonlinear Deformation Waves, IUTAM Symposium, Tallinn 1982 (ed. U. Nigul & J. Engelbrecht), pp. 203208. Springer.
Taylor, G. I. 1910 Proc. R. Soc. Lond. A 84, 371377.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.