Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-02-09T20:48:47.192Z Has data issue: false hasContentIssue false

Thermotactic navigation of an artificial microswimmer near a plane wall

Published online by Cambridge University Press:  03 February 2023

Antarip Poddar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India
*
Email address for correspondence: antarip@iitism.ac.in

Abstract

Despite significant advances in the field of man-made micro- and nanomotors, it remains a challenge to precisely control their motion in bounded environments. Here, we present a theoretical analysis of a thermally activated micromotor near a plane wall under the action of a background linear temperature field. The coupling between the autonomous and field-directed motions has been resolved using a combined analytical–numerical framework comprising general solutions in bispherical coordinates and the reciprocal theorem for creeping flows. Results reveal giant augmentation in swimming speeds, the controlling parameter zones for positive and negative thermotaxes and the flexibility of steering perpendicular to the field gradient for an isolated micromotor. Boundary-instigated thermo-fluidic modulations at different levels of confinements and preferential orientations cause directional switching of both the vertical translation and rotation parallel to the wall, thereby drastically altering the phase portraits of the swimmer dynamics. Contrasting trajectory characteristics, e.g. escape, attraction, are partitioned by unstable separatrices in the phase portraits, while competitive repulsion (attraction) after attraction (repulsion) characteristics emerge for different relative field strengths $\mathcal {S}$ and gradient orientations $\theta _T$. Below $\mathcal {S}=0.25$, highly counter-intuitive trajectories result when the micromotor is initially launched from an overlapping escape zone. Moreover, external-field-assisted microswimming can uniquely tune the directionality of wall-parallel translation, broadening the scope of dynamic regulation of self-propulsion. Thus, providing insights into a precisely controlled fuel-free actuation of micromotors near a physical obstacle, the present study stands as a step toward addressing the increasing demand for successful implementation of micromotors in futuristic clinical and environmental applications.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J.L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.CrossRefGoogle Scholar
Auschra, S., Bregulla, A., Kroy, K. & Cichos, F. 2021 Thermotaxis of janus particles. Eur. Phys. J. E 44 (7), 115.CrossRefGoogle ScholarPubMed
Balasubramanian, S., Kagan, D., Manesh, K.M., Calvo-Marzal, P., Flechsig, G.-U. & Wang, J. 2009 Thermal modulation of nanomotor movement. Small 5 (13), 15691574.CrossRefGoogle ScholarPubMed
Baraban, L., Harazim, S.M., Sanchez, S. & Schmidt, O.G. 2013 Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. 125 (21), 56625666.CrossRefGoogle Scholar
Baraban, L., Makarov, D., Streubel, R., Monch, I., Grimm, D., Sanchez, S. & Schmidt, O.G. 2012 Catalytic janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6 (4), 33833389.CrossRefGoogle ScholarPubMed
Bayati, P. & Najafi, A. 2019 Electrophoresis of active janus particles. J. Chem. Phys. 150 (23), 234902.CrossRefGoogle ScholarPubMed
Bickel, T., Majee, A. & Würger, A. 2013 Flow pattern in the vicinity of self-propelling hot janus particles. Phys. Rev. E 88 (1), 012301.CrossRefGoogle ScholarPubMed
Bickel, T., Zecua, G. & Würger, A. 2014 Polarization of active Janus particles. Phys. Rev. E 89 (5), 050303.CrossRefGoogle ScholarPubMed
Boymelgreen, A.M. & Miloh, T. 2012 Induced-charge electrophoresis of uncharged dielectric spherical Janus particles. Electrophoresis 33 (5), 870879.CrossRefGoogle ScholarPubMed
Bregulla, A.P., Yang, H. & Cichos, F. 2014 Stochastic localization of microswimmers by photon nudging. ACS Nano 8 (7), 65426550.CrossRefGoogle ScholarPubMed
Brock, J.R. 1962 On the theory of thermal forces acting on aerosol particles. J. Colloid. Sci. 17 (8), 768780.CrossRefGoogle Scholar
Chen, S.H. 1999 Thermophoretic deposition of a sphere normal to a plane surface. Aerosol. Sci. Tech. 30 (4), 364382.CrossRefGoogle Scholar
Chen, X.-Z., Hoop, M., Mushtaq, F., Siringil, E., Hu, C., Nelson, B.J. & Pané, S. 2017 Recent developments in magnetically driven micro-and nanorobots. Appl. Mater. Today 9, 3748.CrossRefGoogle Scholar
Dean, W. & O'Neill, M. 1963 A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika 10 (1), 1324.CrossRefGoogle Scholar
Di Leonardo, R., Ianni, F. & Ruocco, G. 2009 Colloidal attraction induced by a temperature gradient. Langmuir 25 (8), 42474250.CrossRefGoogle ScholarPubMed
Gangwal, S., Cayre, O.J., Bazant, M.Z. & Velev, O.D. 2008 Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100 (5), 058302.CrossRefGoogle ScholarPubMed
Gao, W. & Wang, J. 2014 The environmental impact of micro/nanomachines: a review. ACS Nano 8 (4), 31703180.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Springer.Google Scholar
Howse, J.R., Jones, R.A., Ryan, A.J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Ibrahim, Y. & Liverpool, T. 2016 How walls affect the dynamics of self-phoretic microswimmers. Eur. Phys. J 225 (8), 18431874.Google Scholar
Ilic, O., Kaminer, I., Lahini, Y., Buljan, H. & Soljacic, M. 2016 Exploiting optical asymmetry for controlled guiding of particles with light. ACS Photonics 3 (2), 197202.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88 (6), 062702.CrossRefGoogle Scholar
Jeffery, G.B. 1912 On a form of the solution of Laplace's equation suitable for problems relating to two spheres. Proc. R. Soc. Lond. A 87 (593), 109120.Google Scholar
Jiang, H.-R., Yoshinaga, N. & Sano, M. 2010 Active motion of a janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105 (26), 268302.CrossRefGoogle Scholar
Keh, H.J. & Chen, P.Y. 2003 Thermophoresis of an aerosol sphere parallel to one or two plane walls. AIChE J. 49 (9), 22832299.CrossRefGoogle Scholar
Kroy, K., Chakraborty, D. & Cichos, F. 2016 Hot microswimmers. Eur. Phys. J 225 (11–12), 22072225.Google Scholar
Krug, P.J., Riffell, J.A. & Zimmer, R.K. 2009 Endogenous signaling pathways and chemical communication between sperm and egg. J. Expl Biol. 212 (8), 10921100.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Lee, J.G., Al Harraq, A., Bishop, K.J. & Bharti, B. 2021 Fabrication and electric field-driven active propulsion of patchy microellipsoids. J. Phys. Chem. B 125 (16), 42324240.CrossRefGoogle ScholarPubMed
Lou, X., Yu, N., Liu, R., Chen, K. & Yang, M. 2018 Dynamics of a colloidal particle near a thermoosmotic wall under illumination. Soft Matt. 14 (8), 13191326.CrossRefGoogle Scholar
Lozano, C., Ten Hagen, B., Löwen, H. & Bechinger, C. 2016 Phototaxis of synthetic microswimmers in optical landscapes. Nat. Commun. 7, 12828.CrossRefGoogle ScholarPubMed
Luo, M., Feng, Y., Wang, T. & Guan, J. 2018 Micro-/nanorobots at work in active drug delivery. Adv. Funct. Mater. 28 (25), 1706100.CrossRefGoogle Scholar
Mantripragada, V.T. & Poddar, A. 2022 Rheology dictated spreading regimes of a non-isothermal sessile drop. J. Fluid Mech. 951, A42.CrossRefGoogle Scholar
Mao, H., Yang, T. & Cremer, P.S. 2002 A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J. Am. Chem. Soc. 124 (16), 44324435.CrossRefGoogle ScholarPubMed
Medina-Sánchez, M., Schwarz, L., Meyer, A.K., Hebenstreit, F. & Schmidt, O.G. 2016 Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16 (1), 555561.CrossRefGoogle ScholarPubMed
Medina-Sánchez, M., Xu, H. & Schmidt, O.G. 2018 Micro-and nano-motors: the new generation of drug carriers. Ther. Deliv. 9 (4), 303316.CrossRefGoogle ScholarPubMed
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Moran, J.L. & Posner, J.D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49, 511540.CrossRefGoogle Scholar
Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2016 Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids 28 (5), 053107.CrossRefGoogle Scholar
O'Neill, M.E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (1), 6774.CrossRefGoogle Scholar
Panigrahi, D.P., Santra, S., Banuprasad, T.N., Das, S. & Chakraborty, S. 2021 Interfacial viscosity-induced suppression of lateral migration of a surfactant laden droplet in a nonisothermal poiseuille flow. Phys. Rev. Fluids 6, 053603.CrossRefGoogle Scholar
Park, S. & Yossifon, G. 2020 Micromotor-based biosensing using directed transport of functionalized beads. ACS Sens. 5 (4), 936942.CrossRefGoogle ScholarPubMed
Pasol, L., Chaoui, M., Yahiaoui, S. & Feuillebois, F. 2005 Analytical solutions for a spherical particle near a wall in axisymmetrical polynomial creeping flows. Phys. Fluids 17 (7), 073602.CrossRefGoogle Scholar
Paxton, W.F., Baker, P.T., Kline, T.R., Wang, Y., Mallouk, T.E. & Sen, A. 2006 Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128 (46), 1488114888.CrossRefGoogle ScholarPubMed
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2019 a Activated micromotor propulsion by enzyme catalysis in a biofluid medium. Appl. Phys. Lett. 114, 053701.CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2020 Near-wall hydrodynamic slip triggers swimming state transition of micro-organisms. J. Fluid Mech. 894, A11.CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2021 Steering a thermally activated micromotor with a nearby isothermal wall. J. Fluid Mech. 915, A22.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2019 b Electrical switching of a surfactant coated drop in poiseuille flow. J. Fluid Mech. 870, 2766.CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2019 c Electrorheology of a dilute emulsion of surfactant-covered drops. J. Fluid Mech. 881, 524550.CrossRefGoogle Scholar
Pohl, O. & Stark, H. 2014 Dynamic clustering and chemotactic collapse of self-phoretic active particles. Phys. Rev. Lett. 112 (23), 238303.CrossRefGoogle ScholarPubMed
Popescu, M.N., Uspal, W.E., Bechinger, C. & Fischer, P. 2018 Chemotaxis of active janus nanoparticles. Nano Lett. 18 (9), 53455349.CrossRefGoogle ScholarPubMed
Qian, B., Montiel, D., Bregulla, A., Cichos, F. & Yang, H. 2013 Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4 (4), 14201429.CrossRefGoogle Scholar
Saha, S., Golestanian, R. & Ramaswamy, S. 2014 Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E 89 (6), 062316.CrossRefGoogle ScholarPubMed
Sánchez, S., Soler, L. & Katuri, J. 2015 Chemically powered micro-and nanomotors. Angew. Chem. Intl Ed. Engl. 54 (5), 14141444.CrossRefGoogle ScholarPubMed
Sharan, P., Xiao, Z., Mancuso, V., Uspal, W.E. & Simmchen, J. 2022 Upstream rheotaxis of catalytic janus spheres. ACS Nano 16 (3), 45994608.CrossRefGoogle ScholarPubMed
Shields IV, C.W. & Velev, O.D. 2017 The evolution of active particles: toward externally powered self-propelling and self-reconfiguring particle systems. Chem 3 (4), 539559.CrossRefGoogle Scholar
Shum, H., Gaffney, E.A. & Smith, D.J. 2010 Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. Lond. A 466 (2118), 17251748.Google Scholar
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Subramanian, R.S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.Google Scholar
Tsuji, T., Sasai, Y. & Kawano, S. 2018 Thermophoretic manipulation of micro-and nanoparticle flow through a sudden contraction in a microchannel with near-infrared laser irradiation. Phys. Rev. Appl. 10 (4), 044005.CrossRefGoogle Scholar
Tu, Y., Peng, F. & Wilson, D.A. 2017 Motion manipulation of micro-and nanomotors. Adv. Mater. 29 (39), 1701970.CrossRefGoogle ScholarPubMed
Uspal, W. 2019 Theory of light-activated catalytic janus particles. J. Chem. Phys. 150 (11), 114903.CrossRefGoogle ScholarPubMed
Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2015 a Rheotaxis of spherical active particles near a planar wall. Soft Matt. 11 (33), 66136632.CrossRefGoogle Scholar
Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2015 b Self-propulsion of a catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matt. 11, 434438.CrossRefGoogle Scholar
Vinze, P.M., Choudhary, A. & Pushpavanam, S. 2021 Motion of an active particle in a linear concentration gradient. Phys. Fluids 33 (3), 032011.CrossRefGoogle Scholar
Wang, L., Li, L., Li, T., Zhang, G. & Sun, Q. 2015 Locomotion of chemically powered autonomous nanowire motors. Appl. Phys. Lett. 107 (6), 063102.CrossRefGoogle Scholar
Wang, X., et al. 2018 High-motility visible light-driven ag/agcl janus micromotors. Small 14 (48), 1803613.CrossRefGoogle ScholarPubMed
Weinert, F.M. & Braun, D. 2008 Observation of slip flow in thermophoresis. Phys. Rev. Lett. 101 (16), 168301.CrossRefGoogle ScholarPubMed
Xu, L., Mou, F., Gong, H., Luo, M. & Guan, J. 2017 Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46 (22), 69056926.CrossRefGoogle ScholarPubMed
Yamamoto, K., Macnab, R.M. & Imae, Y. 1990 Repellent response functions of the trg and tap chemoreceptors of escherichia coli. J. Bacteriol. 172 (1), 383388.CrossRefGoogle ScholarPubMed