Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T06:50:13.075Z Has data issue: false hasContentIssue false

Three-dimensional numerical simulation of convection in low-Prandtl-number fluids

Published online by Cambridge University Press:  21 April 2006

M. Meneguzzi
Affiliation:
Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette and CNRS, France
C. Sulem
Affiliation:
Department of Mathematics, Ben Gurion University of the Negev, Beersheva, Israeland CNRS, Centre de Mathématiques Appliquées, Ecole Normale Superieure, Paris, France
P. L. Sulem
Affiliation:
School of Mathematical Sciences, Tel-Aviv University, Israeland CNRS, Observatoire de Nice, France
O. Thual
Affiliation:
Centre National de Recherche Métérologique, Météorologie Nationale, 31057, Toulousse-Cedex, France

Abstract

We present three-dimensional numerical simulations of convection in a low-Prandtlnumber fluid confined between two infinite horizontal bounding surfaces maintained at constant temperatures. We consider the case of free-slip boundary conditions for a fluid of Prandtl number Pr = 0.2 and that of rigid boundary conditions with Pr = 0.025. In the former situation, we observe stationary, periodic, biperiodic and chaotic regimes as the Rayleigh number is increased. In the later situation, the dynamics involves very different characteristic times, and only stationary and time-periodic solutions have been simulated. Convergence to the later regime may occur after a long transient where the amplitude of the oscillation is slowly modulated.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argoul, F. & Arneodo, A. 1984 J. Méc. Théor. Appl. numéro speciale, p. 241.
Arneodo, A., Coullet, P. H. & Spiegel, E. A. 1983 Phys. Lett. 94A, 1.
Basdevant, C. 1983 J. Comp. Phys. 50, 209214.
Bolton, E. W. & Busse, F. H. 1985 J. Fluid Mech. 150, 487.
Brachet, M. E., Metcalfe, R. W., Orszag, S. A. & Riley, J. J. 1985 In Progress and Super-computing in Computational Fluid Mechanics. Proc. U.S. Israel Workshop 1984 (ed. E. M. Murman & S. Abarbane), p. 257. Birkhäuser.
Busse, F. H. 1972 J. Fluid Mech. 52, 97.
Busse, F. H. & Bolton, E. W. 1984 J. Fluid Mech. 146, 115.
Busse, F. H. & Clever, R. M. 1981 J. Fluid Mech. 102, 75.
Busse, F. H. & Clever, R. M. 1983 J. Méc. Théor Appl. 2, 495.
Chandrashekhar, S. 1961 Hydrodynamics and Magnetohydrodynamics Stability. Oxford University Press.
Clever, R. M. & Busse, F. H. 1974 J. Fluid Mech. 65, 625.
Clever, R. M. & Busse, F. H. 1981 J. Fluid Mech. 102, 61.
Clever, R. M. & Busse, F. H. 1986 Nonlinear oscillatory convection. Preprint.
Curry, J. H., Herring, J. H., Loncaric, J. & Orszag, S. A. 1987 J. Fluid Mech. 147, 1.
Franceschini, V. 1983 Physica 6D, 285.
Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Applications. NSF-CENS Monograph, vol. 26. Philadelphia: Soc. Indus. Appl. Math.
Herring, J. R. & Jackson, S. 1984 Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi). IUTAM.
Keefe, L. R. 1985 Stud. Appl. Maths 73, 91.
Kleiser, L. & Schumann, U. 1979 Treatment of incompressibility and boundary conditions in three dimensions. Numerical simulations of plane channel flows. Notes on Num. Fluids Mech. vol. 2 (ed. E. H. Hirschel). Proc. in Fluid Mech, DFVLR, Cologne.
Krishnamurti, R. 1973 J. Fluid Mech. 60, 285.
Kuramoto, Y. & Koga, S. 1982 Phys. Lett. 92A, 1.
Libchaber, A., Fauve, S. & Laroche, C. 1983 Physica 7D, 73.
Libchaber, A. & Maurer, J. 1980 J. Phys. Paris 41, 51.
Lipps, F. B. 1976 J. Fluid Mech. 75, 113.
Maeno, Y., Hauche, H. & Wheatley, J. C. 1985 Phys. Rev. Lett. 54, 340.
Marcus, P. S. 1981 J. Fluid Mech. 103, 241.
Marcus, P. S., Orszag, S. A. & Patera, A. T. 1982 In Proc. 8th Intl Conf. on Numerical Methods in Fluid Mechanics (ed. E. Krause), Lecture Notes in Physics, vol. 170, p. 371. Springer.
Mclaughlin, J. & Orszag, S. A. 1982 J. Fluid Mech. 122, 123.
Moon, H. T., Huerre, P. & Redekopp, L. G. 1983 Physica 7D, 135.
Moore, D. R. & Weiss, N. O. 1973 J. Fluid Mech. 58, 289.
Orszag, S. A. & Kells, L. C. 1980 J. Fluid Mech. 95, 159.
Patera, A. 1984 J. Comp. Phys. 54, 468.
Roberts, P. H. 1967 An Introduction to Magnetohydrodynamics. Longman.
Rossby, H. T. 1969 J. Fluid Mech. 36, 309.
Ruelle, D., Takens, F. & Newhouse, S. 1978 Communs Math. Phys. 64, 35.
SchÜlter, A., Lortz, D. & Busse, F. 1965 J. Fluid Mech. 23, 129.
Siggia, E. D. & Zippelius, A. 1981 Phys. Rev. Lett. 47, 835.
Spiegel, E. A. 1971 Ann. Rev. Astro. Astrophys 9, 323.
Sreenivasan, R. K. 1985 In Frontiers in Fluid Mechanics (ed. S. H. Davis & J. L. Lumley), p. 41. Springer.
Sulem, P. L., Sulem, C. & Thual, O. 1985 In Single and Multi-Phase Flows in an Electromagnetic Field. Proc. 4th Beersheva Seminar 1984 (ed. H. Branover, P. S. Lykoudis & M. Mond). Prog. Astro. Aeronaut. 100, 125.
Treve, Y. M. & Mauly, O. P. 1982 Physica 4D, 319.
Zippelius, A. & Siggia, E. D. 1982 Phys. Rev. A26, 1788.
Zippelius, A. & Siggia, E. D. 1983 Phys. Rev. A26, 2905.