Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T20:16:50.578Z Has data issue: false hasContentIssue false

Three-dimensional simulations of premixed hydrogen/air flames in microtubes

Published online by Cambridge University Press:  11 August 2010

G. PIZZA
Affiliation:
Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland Combustion Research Laboratory, Paul Scherrer Institute, Villigen CH-5232, Switzerland
C. E. FROUZAKIS*
Affiliation:
Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland
J. MANTZARAS
Affiliation:
Combustion Research Laboratory, Paul Scherrer Institute, Villigen CH-5232, Switzerland
A. G. TOMBOULIDES
Affiliation:
Department of Mechanical Engineering, University of Western Macedonia, Kozani 50100, Greece
K. BOULOUCHOS
Affiliation:
Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland
*
Email address for correspondence: frouzakis@lav.mavt.ethz.ch

Abstract

The dynamics of fuel-lean (equivalence ratio φ = 0.5) premixed hydrogen/air atmospheric pressure flames are investigated in open cylindrical tubes with diameters of d = 1.0 and 1.5 mm using three-dimensional numerical simulations with detailed chemistry and transport. In both cases, the inflow velocity is varied over the range where the flames can be stabilized inside the computational domain. Three axisymmetric combustion modes are observed in the narrow tube: steady mild combustion, oscillatory ignition/extinction and steady flames as the inflow velocity is varied in the range 0.5 ≤ UIN ≤ 500 cm s−1. In the wider tube, richer flame dynamics are observed in the form of steady mild combustion, oscillatory ignition/extinction, steady closed and open axisymmetric flames, steady non-axisymmetric flames and azimuthally spinning flames (0.5 ≤ UIN ≤ 600 cm s−1). Coexistence of the spinning and the axisymmetric modes is obtained over relatively wide ranges of UIN. Axisymmetric simulations are also performed in order to better understand the nature of the observed transitions in the wider tube. Fourier analysis during the transitions from the steady axisymmetric to the three-dimensional spinning mode and to the steady non-axisymmetric modes reveals that the m = 1 azimuthal mode plays a dominant role in the transitions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bychkov, V., Akkerman, V., Fru, G., Petchenko, A. & Eriksson, L.-E. 2007 Flame acceleration in the early stages of burning in tubes. Combust. Flame 150, 263276.CrossRefGoogle Scholar
Chu, B.-T. & Kovasznay, C. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494514.CrossRefGoogle Scholar
Clanet, C. & Searby, G. 1996 On the ‘tulip flame’ phenomenon. Combust. Flame 105, 225238.CrossRefGoogle Scholar
Coffee, T. P. & Heimerl, J. M. 1981 Transport algorithms for premixed laminar steady-state flames. Combust. Flame 43, 273289.CrossRefGoogle Scholar
Cohen, S. D. & Hindmarsh, A. C. 1996 CVODE, a stiff/nonstiff ODE solver. Comput. Phys. 10 (2), 138143.CrossRefGoogle Scholar
Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-Order Methods for Incompressible Fluid Flows. Cambridge University Press.CrossRefGoogle Scholar
Dogwiler, U., Mantzaras, J., Benz, P., Kaeppeli, B., Bombach, R. & Arnold, A. 1998 Homogeneous ignition of methane–air mixtures over platinum: comparison of measurements and detailed numerical predictions. Proc. Combust. Inst. 27, 22752282.CrossRefGoogle Scholar
Dunn-Rankin, D. & Sawyer, R. F. 1998 Tulip flames: changes in shape of premixed flames propagating in closed tubes. Exp. Fluids 24, 130140.CrossRefGoogle Scholar
Dunn-Rankin, D., Sawyer, R. F. & Barr, P. K. 1986 Numerical and experimental study of ‘tulip’ flame formation in a closed vessel. Proc. Combust. Inst. 21, 12911301.CrossRefGoogle Scholar
Ellis, O. C. de C. 1928 Flame movement in gaseous explosive mixtures. J. Fuel Sci. 7, 502508.Google Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G. 2008 nek5000 Web page, http://nek5000.mcs.anl.gov.Google Scholar
Gonzalez, M., Borghi, B. & Saouab, A. 1992 Interaction of a flame front with its self-generated flow in an enclosure: the ‘tulip flame’ phenomenon. Combust. Flame 88, 201220.CrossRefGoogle Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1954 Molecular Theory of Gases and Liquids. Wiley.Google Scholar
Jackson, T. L., Buckmaster, J., Lu, Z., Kyritsis, D. C. & Massa, L. 2007 Flames in narrow circular tubes. Proc. Combust. Inst. 31, 955962.CrossRefGoogle Scholar
Karagiannidis, S., Mantzaras, J., Jackson, G. & Boulouchos, K. 2007 Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors. Proc. Combust. Inst. 31, 33093317.CrossRefGoogle Scholar
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A. 1986 A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Tech. Rep. SAND86-8246. Sandia National Laboratories.Google Scholar
Kee, R. J., Grcar, J. F., Smoke, M. D. & Miller, J. A. 1985 PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. SAND85-8240. Sandia National Laboratories.Google Scholar
Kee, R. J., Rupley, F. M. & Miller, J. A. 1989 Chemkin. Part II. A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Tech. Rep. SAND89-8009B. Sandia National Laboratories.CrossRefGoogle Scholar
Kim, T. J., Yetter, R. A. & Dryer, F. L. 1994 New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modeling. Proc. Combust. Inst. 25, 759766.CrossRefGoogle Scholar
Kurdyumov, V. & Fernandez-Tarrazo, E. 2002 Lewis number effect on the propagation of premixed laminar flames in narrow open ducts. Combust. Flame 128, 382394.CrossRefGoogle Scholar
Kurdyumov, V., Fernandez-Tarrazo, E., Truffaut, J.-M., Quinard, J., Wangher, A. & Searby, G. 2007 Experimental and numerical study of premixed flame flashback. Proc. Combust. Inst. 31, 12751282.CrossRefGoogle Scholar
Kurdyumov, V., Pizza, G., Frouzakis, C. E. & Mantzaras, J. 2009 Dynamics of premixed flames in a narrow channel with a step-wise wall temperature. Combust. Flame 156 (11), 21902200.CrossRefGoogle Scholar
Kurdyumov, V., Truffaut, J.-M., Quinard, J., Wangher, A. & Searby, G. 2008 Oscillations of premixed flames in tubes near the flashback condition. Combust. Sci. Technol. 180, 731742.CrossRefGoogle Scholar
Kwon, M. J., Lee, B. J. & Chung, S. H. 1996 An observation of near-planar spinning premixed flames in a sudden expansion tube. Combust. Flame 105, 180188.CrossRefGoogle Scholar
Lewis, B. & von Elbe, G. 1987 Combustion, Flames and Explosions in Gases. Academic Press.Google Scholar
Majda, A. 1984 Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer.CrossRefGoogle Scholar
Maksimov, Y. M., Pak, A. T., Lavrenchuk, G. B., Naiborodenko, Y. S. & Merzhanov, A. G. 1979 Spin combustion of gasless systems. Combust. Expl. Shock Waves 15, 415418.CrossRefGoogle Scholar
Mantzaras, J. & Appel, C. 2002 Effects of finite rate heterogeneous kinetics on homogeneous ignition in catalytically stabilized channel flow combustion. Combust. Flame 130, 336351.CrossRefGoogle Scholar
Marra, F. S. & Continillo, G. 1996 Numerical study of premixed laminar flame propagation in a close tube with a full Navier–Stokes approach. Proc. Combust. Inst. 26, 907913.CrossRefGoogle Scholar
Maruta, K., Kataoka, T., Kim, N. I., Minaev, S. & Fursenko, R. 2005 Characteristics of microscale combustion in a narrow channel with a temperature gradient. Proc. Combust. Inst. 30, 24292436.CrossRefGoogle Scholar
Maruta, K., Takeda, K., Ahn, J., Borer, K., Sitzki, L., Ronney, P. D. & Deutschmann, O. 2002 Extinction limits of catalytic combustion in microchannels. Proc. Combust. Inst. 29, 957963.CrossRefGoogle Scholar
Matalon, M. & Metzener, P. 1997 The propagation of premixed flames in closed tubes. J. Fluid Mech. 336, 331350.CrossRefGoogle Scholar
Matkowsky, B. J. & Olagunju, D. O. 1982 Spinning waves in gaseous combustion. SIAM J. Appl. Math. 42, 11381156.CrossRefGoogle Scholar
Metzener, P. & Matalon, M. 2001 Premixed flames in closed cylindrical tubes. Combust. Theory Model. 5, 463483.CrossRefGoogle Scholar
Minaev, S., Maruta, K. & Fursenko, R. 2007 Nonlinear dynamics of flame in a narrow channel with a temperature gradient. Combust. Theory Model 11 (2), 187203.CrossRefGoogle Scholar
Norton, D. G. & Vlachos, D. G. 2003 Combustion characteristics and flame stability at the microscale: a cfd study of premixed methane/air mixtures. Chem. Engng Sci. 58 (21), 48714882.CrossRefGoogle Scholar
Panfilov, V., Bayliss, A. & Matkowsky, B. J. 2003 Spiral flames. Appl. Math. Lett. 16, 131135.CrossRefGoogle Scholar
Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468488.CrossRefGoogle Scholar
Pearlman, H. 1997 Excitability in high-Lewis number premixed gas combustion. Combust. Flame 109, 382398.CrossRefGoogle Scholar
Petchenko, A. & Bychkov, V. 2004 Axisymmetric versus non-axisymmetric flames in cylindrical tubes. Combust. Flame 136, 429439.CrossRefGoogle Scholar
Pizza, G., Frouzakis, C. E., Mantzaras, J., Tomboulides, A. G. & Boulouchos, K. 2008 a Dynamics of premixed hydrogen/air flames in mesoscale channels. Combust. Flame 155, 220.CrossRefGoogle Scholar
Pizza, G., Frouzakis, C. E., Mantzaras, J., Tomboulides, A. G. & Boulouchos, K. 2008 b Dynamics of premixed hydrogen/air flames in microchannels. Combust. Flame 152, 433450.CrossRefGoogle Scholar
Pizza, G., Mantzaras, J., Frouzakis, C. E., Tomboulides, A. G. & Boulouchos, K. 2009 Suppression of combustion instabilities of premixed hydrogen/air flames in microchannels using heterogeneous reactions. Proc. Combust. Inst. 32, 30513058.CrossRefGoogle Scholar
Raja, L. L., Kee, R. J., Deutschmann, O., Warnatz, J. & Schmidt, L. D. 2000 A critical evaluation of Navier–Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith. Catal. Today 59, 4760.CrossRefGoogle Scholar
Rehm, R. G. & Baum, H. R. 1978 The equations of motion for thermally driven buoyant flows. J. Res. Natl Bur. Stand. 83, 297308.CrossRefGoogle ScholarPubMed
Richecoeur, F. & Kyritsis, D. C. 2005 Experimental study of flame stabilization in low Reynolds and Dean number flows in curved mesoscale ducts. Proc. Combust. Inst. 30, 24192427.CrossRefGoogle Scholar
Robbins, K., Gorman, M., Bowers, J. & Brockman, R. 2004 Spiral dynamics of pulsating methane-oxygen flames on a circular burner. Chaos 14, 467476.CrossRefGoogle ScholarPubMed
Scott, S. K., Wang, J. & Showalter, K. 1997 Modelling studies of spiral waves and target pattern in premixed flames. J. Chem. Soc. Faraday Trans. 93, 17331739.CrossRefGoogle Scholar
Tomboulides, A. G., Lee, J. & Orszag, S. A. 1997 Numerical simulation of low Mach number reactive flows. J. Sci. Comput. 12, 139167.CrossRefGoogle Scholar
Tomboulides, A. G. & Orszag, S. A. 1998 A quasi-two-dimensional benchmark problem for low Mach number compressible codes. J. Comput. Phys. 146 (2), 691706.CrossRefGoogle Scholar
Tsai, C.-H. 2008 The asymmetric behavior of steady laminar flame propagation in ducts. Combust. Sci. Technol. 180, 533545.CrossRefGoogle Scholar
Xu, B. & Ju, Y. 2007 Experimental study of spinning combustion in a mesoscale divergent channel. Proc. Combust. Inst. 31, 32853292.CrossRefGoogle Scholar
Zamashchikov, V. V. 2003 Rotating gas flames. Combust. Exp. Shock Waves 39, 124125.CrossRefGoogle Scholar
Zhang, S. & Munir, Z. A. 1992 Spin combustion in the nickel-silicon system. J. Mater. Sci. 27, 57895794.CrossRefGoogle Scholar