Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T07:04:59.583Z Has data issue: false hasContentIssue false

The three-dimensional structure of periodic vorticity layers under non-symmetric conditions

Published online by Cambridge University Press:  26 April 2006

Omar M. Knio
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
Ahmed F. Ghoniem
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Numerical simulations of a three-dimensional temporally growing shear layer are obtained at high Reynolds number and zero Froude number using a vortex scheme modified for a variable-density flow. Attention is focused on the effect of initial vorticity and density distributions on the interaction between instability modes which lead to the generation and intensification of streamwise vorticity. Results show that the three-dimensional instabilities evolve following the formation of concentrated span wise vorticity cores. The deformation of each core along its span resembles the amplification of the translative instability. The generation of vortex rods, which wrap around individual cores while stretching between neighbouring cores, suggest a mode similar to the Corcos instability. The instability modes leading to the formation of both structures, energized by the extensional strain generated by the cores, grow simultaneously. A similar series of events occurs in variable-density shear layers and in shear layers which start with an asymmetric vorticity distribution. Baroclinic vorticity generation in the variable-density layer leads to the formation of asymmetric cores whose volumetric composition is biased towards the lighter fluid. The structures are propelled, by their asymmetric vorticity distribution, in the direction of the heavier stream while their eccentric spinning forces an uneven stretching of the vortex rods. The origin of the asymmetry is established by comparing these with the results of a shear layer with an initially asymmetric vorticity distribution in a uniform-density flow. The strong late-stage asymmetry exhibited by the former is not observed in the latter. Thus, baroclinic vorticity generation is responsible for the observed symmetry. We also find that initially asymmetric vorticity distribution does not, as suggested before, lead to asymmetric spacing between the streamwise rods, it is concluded that the experimentally observed asymmetric spacing must arise after pairing.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashurst, W. T. & Meiburg, E. 1988 J. Fluid Mech. 189, 87.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, Cambridge University Press.
Beale, J. T. 1986 Math. Comput. 46, 401.
Beale, J. T. & Majda, A. 1982a Math. Comput. 39, 1.
Beale, J. T. & Majda, A. 1982b Math. Comput. 39, 29.
Beale, J. T. & Majda, A. 1985 J. Comput. Phys. 58, 188.
Bernal, L. P. 1981 The coherent structure of turbulent mixing layers. Ph.D. thesis, California Institute of Technology.
Bernal, L. P. & Roshko, A. 1986 J. Fluid Mech. 170, 499.
Breidenthal, R. 1980 Phys. Fluids 23, 1929.
Breidenthal, R. 1981 J. Fluid Mech. 109, 1.
Browand, F. K. & Troutt, T. R. 1980 J. Fluid Mech. 97, 771.
Brown, G. L. & Roshko, A. 1974 J. Fluid Mech. 64, 775.
Chorin, A. J. 1973 J. Fluid Mech. 57, 785.
Corcos, G. M. & Lin, S. J. 1984 J. Fluid Mech. 139, 67.
Crow, S. C. & Champagne, F. H. 1970 J. Fluid Mech. 48, 547.
Dimotakis, P. E. 1986 AIAA J. 24, 1791.
Dimotakis, P. E. 1989 AIAA Paper 890262.
Ghoniem, A. F., Heidarinejad, G. & Krishnan, A. 1988 J. Comput. Phys. 79, 135.
Ghoniem, A. F. & Krishnan, A. 1988 In Twenty-Second Symp. (Intl) on Combustion, p. 665. The Combustion Institute.
Greengard, C. 1986 Math. Comput. 47, 387.
Grinstein, F. F., Hussain, F. & Oran, E. S. 1989 AIAA Paper 890977.
Ho, C.-H. & Huerre, P. 1984 Ann. Rev. Fluid Mech. 16, 365.
Hussain, A. K. M. F. 1986 J. Fluid Mech. 173, 303.
Inoue, O. 1989 AIAA J. 27, 1517.
Jimenez, J. 1983 J. Fluid Mech. 132, 319.
Jimenez, J., Cogollos, M. & Bernal, L. P. 1985 J. Fluid Mech. 152, 125.
Knio, O. M. & Ghoniem, A. F. 1988 AIAA Paper 880728.
Knio, O. M. & Ghoniem, A. F. 1990 J. Comput. Phys. 86, 75.
Knio, O. M. & Ghoniem, A. F. 1991 J. Comput. Phys. 97, 172.
Knio, O. M. & Ghoniem, A. F. 1992 AIAA J. 30, 105.
Konrad, J. H. 1976 An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. Ph.D. thesis, California Institute of Technology.
Koochesfahani, M. M. & Frieler, C. E. 1989 AIAA J. 27, 1735.
Koop, C. G. & Browand, F. K. 1979 J. Fluid Mech. 93, 135.
Krishnan, A. 1989 Numerical study of vorticity-combustion interactions in shear flow. Ph.D. thesis, MIT.
Lasheras, J. C., Cho, J. S. & Maxworthy, T. 1986 J. Fluid Mech. 172, 231.
Lasheras, J. C. & Choi, H. 1988 J. Fluid Mech. 189, 53.
Leonard, A. 1985 Ann. Rev. Fluid Mech. 17, 525.
Lin, S. J. & Corcos, G. M. 1984 J. Fluid Mech. 141, 139.
Lowery, P. S., Reynolds, W. C. & Mansour, N. N. 1987 AIAA Paper 870132.
Majda, A. & Sethian, J. A. 1987 Combust. Sci. Tech. 42, 185.
Maslowe, S. A. & Kelly, R. E. 1971 J. Fluid Mech. 48, 405.
Mcmurtry, P. A., Riley, J. J. & Metcalfe, R. W. 1989 J. Fluid Mech. 199, 297.
Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon, S. & Riley, J. J. 1987 J. Fluid Mech. 184, 207.
Neu, J. C. 1984 J. Fluid Mech. 143, 253.
Pierrehumbert, R. T. & Widnall, S. E. 1982 J. Fluid Mech. 114, 59.
Rehm, R. G. & Baum, H. R. 1978 J. Res. Natl Bur. Stand. 83, 297.
Riley, J. J. & McMurtry, P. A. 1989 In Turbulent Reactive Flows (ed. R. Borghi & S. N. B. Murthy), p. 486. Springer.
Widnall, S. E. & Tsai, C.-Y. 1977 Proc. R. Soc. Lond. A 287, 273
Winant, C. D. & Browand, F. K. 1974 J. Fluid Mech. 41, 327.
Wygnanski, I., Oster, D., Fiedler, H. & Dziomba, B. 1979 J. Fluid Mech. 93, 325.