Article contents
Three-dimensional viscous flows with large secondary velocity
Published online by Cambridge University Press: 20 April 2006
Abstract
A new system of approximating equations is derived for three-dimensional steady viscous compressible flows in which a primary flow direction is present, but in which both transverse velocity components can be large. If the transverse velocity vector which corrects a given potential flow is first decomposed into ‘potential’ and ‘rotational’ vector components, then a re-examination of three-dimensional boundary-layer theory shows that both components (vϕ, wϕ) of the potential-velocity vector may be assumed small, whereas both components (vψ, wψ) of the rotational-velocity vector and hence of the composite secondary flow (v, w) can remain of order unity. An assumption of small scalar potential then leads to a system of governing equations whose characteristic polynomial has a non-elliptic form for arbitrary Mach number, without introducing any direct approximation of either streamwise or transverse pressure gradient terms. These non-elliptic equations can be solved very economically as a well-posed initial/boundary-value problem. Computed results for laminar subsonic flow in a curved square duct confirm the small scalar-potential approximation for both large (R/d = 100) and small (R/d = 2) radius of curvature. Other computations for R/d = 2.3 are in good agreement with the measurements of Taylor, Whitelaw & Yianneskis (1980).
- Type
- Research Article
- Information
- Copyright
- © 1984 Cambridge University Press
References
- 55
- Cited by