Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T06:47:45.522Z Has data issue: false hasContentIssue false

A three-equation model for thin films down an inclined plane

Published online by Cambridge University Press:  08 September 2016

G. L. Richard*
Affiliation:
Institut de Mathématiques de Toulouse, UMR5219, Université de ToulouseCNRS, UPS IMT, F-31062 Toulouse CEDEX 9, France
C. Ruyer-Quil
Affiliation:
Institut Universitaire de France, Université de Savoie Mont-Blanc, CNRS, LOCIE 73000 Chambéry, France
J. P. Vila
Affiliation:
Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, INSA, F-31077 Toulouse, France
*
Email address for correspondence: gael.loic.richard@orange.fr

Abstract

We derive a new model for thin viscous liquid films down an inclined plane. With an asymptotic expansion in the long-wave limit, the Navier–Stokes equations and the work–energy theorem are averaged over the fluid depth. This gives three equations for the mass, momentum and energy balance which have the mathematical structure of the Euler equations of compressible fluids with relaxation source terms, diffusive and capillary terms. The three variables of the model are the fluid depth, the average velocity and a third variable called enstrophy, related to the variance of the velocity. The equations are numerically solved by classical schemes which are known to be reliable and robust. The model gives satisfactory results both for the neutral stability curves and for the depth profiles of wavy films produced by a periodical forcing or by a random noise perturbation. The numerical calculations agree fairly well with experimental measurements of Liu & Gollub (Phys. Fluids, vol. 6, 1994, pp. 1702–1712). The calculation of the wall shear stress below the waves indicates a flow reversal at the first depth minimum downstream of the main hump, in agreement with experiments of Tihon et al. (Exp. Fluids, vol. 41, 2006, pp. 79–89).

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abderrahmane, H. A. & Vatistas, G. H. 2007 Improved two-equation model for thin layer fluid flowing down an inclined plane problem. Phys. Fluids 19, 098106.Google Scholar
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1985 Wave formation on vertical falling liquid films. Intl J. Multiphase Flow 11 (5), 607627.CrossRefGoogle Scholar
Bach, P. & Villadsen, J. 1984 Simulation of the vertical flow of a thin, wavy film using a finite-element method. Intl J. Mass Transfer 27 (6), 815827.CrossRefGoogle Scholar
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.Google Scholar
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.CrossRefGoogle Scholar
Bresch, D., Couderc, F., Noble, P. & Vila, J. P. 2016 A generalization of the quantum Bohm identity: hyperbolic CFL condition for Euler–Korteweg equations. C. R. Math. 354 (1), 3943.Google Scholar
Brevdo, L., Laure, P., Dias, F. & Bridges, T. J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.CrossRefGoogle Scholar
Chakraborty, S., Nguyen, P.-K., Ruyer-Quil, C. & Bontozoglou, V. 2014 Extreme solitary waves on falling liquid films. J. Fluid Mech. 745, 564591.Google Scholar
Chang, H. -C., Demekhin, E. A. & Kalaidin, E. 1996 Simulation of noise-driven dynamics on a falling film. AIChE J. 42 (6), 15531568.Google Scholar
Chang, H. -C., Demekhin, E. A. & Kopelevich, D. I. 1993 Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433480.CrossRefGoogle Scholar
Demekhin, E. A., Demekhin, I. A. & Shkadov, V. Y. 1983 Solitons in viscous films flowing down a vertical wall. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 4, 916.Google Scholar
Gavrilyuk, S. L. & Perepechko, Y. V. 1998 Variational approach to constructing hyperbolic models of two-velocity media. Prikl. Mekh. Tekh. Fiz. 39 (5), 3954.Google Scholar
Joo, S. W., Davis, S. H. & Bankoff, S. G. 1991 Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers. J. Fluid Mech. 230, 117146.CrossRefGoogle Scholar
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films. Springer.Google Scholar
Kapitza, P. L. 1948a Wave flow of thin layers of a viscous fluid: Part I. Free flow. Zh. Exper. Teor. Fiz. 18, 318; (in Russian).Google Scholar
Kapitza, P. L. 1948b Wave flow of thin layers of a viscous fluid: Part II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Exper. Teor. Fiz. 18, 1928; (in Russian).Google Scholar
Kapitza, P. L. & Kapitza, S. P. 1949 Wave flow of thin viscous liquid films. Zh. Exper. Teor. Fiz. 19, 105.Google Scholar
Kuramoto, Y. & Tsuzuki, T. 1976 Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55 (2), 356369.CrossRefGoogle Scholar
Lavalle, G., Vila, J. P., Blanchard, G., Laurent, C. & Charru, F. 2015 A numerical reduced model for thin liquid films sheared by a gas flow. J. Comput. Phys. 301, 119140.CrossRefGoogle Scholar
Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6, 17021712.CrossRefGoogle Scholar
Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.Google Scholar
Luchini, P. & Charru, F. 2010 Consistent section-averaged equations of quasi-one-dimensional laminar flow. J. Fluid Mech. 656, 337341.Google Scholar
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: flow structure and binary interactions. Phys. Fluids 14 (3), 10821094.CrossRefGoogle Scholar
Mudunuri, R. R. & Balakotaiah, V. 2006 Solitary waves on thin falling films in the very low forcing frequency limit. AIChE J. 52 (12), 39954003.Google Scholar
Nakoryakov, V. E., Pokusaev, B. G., Alekseenko, S. V. & Orlov, V. V. 1977 Instantaneous velocity profile in a wavy fluid film. Inzh.-Fiz. Zh. 33 (3), 399404.Google Scholar
Nguyen, L. T. & Balakotaiah, V. 2000 Modeling and experimental studies of wave evolution on free falling viscous films. Phys. Fluids 12 (9), 22362256.Google Scholar
Noble, P. & Vila, J. P. 2013 Thin power-law film down an inclined plane: consistent shallow-water models and stability under large-scale perturbations. J. Fluid Mech. 735, 2960.Google Scholar
Noble, P. & Vila, J. P. 2014 Stability theory for difference approximations of Euler Korteweg equations and application to thin film flows. SIAM J. Numer. Anal. 52 (6), 27702791.Google Scholar
Nosoko, T. & Miyara, A. 2004 The evolution and subsequent dynamics of waves on a vertically falling liquid film. Phys. Fluids 16 (4), 11181126.CrossRefGoogle Scholar
Novbari, E. & Oron, A. 2009 Energy integral method model for the nonlinear dynamics of an axisymetric thin liquid film falling on a vertical cylinder. Phys. Fluids 21, 062107.Google Scholar
Ooshida, T. 1999 Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number. Phys. Fluids 11 (11), 32473269.Google Scholar
Ostapenko, V. V. 2014 Conservation laws of shallow water theory and the Galilean relativity principle. J. Appl. Ind. Math. 8 (2), 274286.Google Scholar
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.Google Scholar
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163194.CrossRefGoogle Scholar
Richard, G. L. & Gavrilyuk, S. L. 2012 A new model of roll waves: comparison with Brock’s experiments. J. Fluid Mech. 698, 374405.Google Scholar
Richard, G. L. & Gavrilyuk, S. L. 2013 The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech. 725, 492521.CrossRefGoogle Scholar
Roberts, A. J. 1996 Low-dimensional models of thin film fluid dynamics. Phys. Lett. A 212, 6371.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modelling of flows down inclined planes. Eur. Phys. J. B 15, 357369.Google Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modelling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.Google Scholar
Ruyer-Quil, C. & Manneville, P. 2005 On the speed of solitary waves running down a vertical wall. J. Fluid Mech. 531, 181190.Google Scholar
Salamon, T. R., Armstrong, R. C. & Brown, R. A. 1994 Traveling waves on vertical films: numerical analysis using the finite element method. Phys. Fluids 6, 22022220.CrossRefGoogle Scholar
Shkadov, V. Y. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1, 4351; (English translation in Fluid Dyn., 2, 29–34), 1970 (Faraday Press, NY).Google Scholar
Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames. I: derivation of basic equations. Acta Astronaut. 4 (11), 11771206.Google Scholar
Teshukov, V. M. 2007 Gas-dynamics analogy for vortex free-boundary flows. J. Appl. Mech. Tech. Phys. 48 (3), 303309.Google Scholar
Tihon, J., Serifi, K., Argyriadi, K. & Bontozoglou, V. 2006 Solitary waves on inclined films: their characteristics and the effects on wall shear stress. Exp. Fluids 41, 7989.Google Scholar
Trifonov, Y. Y. 2012 Stability and bifurcations of the wavy film flow down a vertical plate: the results of integral approaches and full-scale computations. Fluid Dyn. Res. 44, 031418.Google Scholar
Usha, R. & Uma, B. 2004 Modeling of stationary waves on a thin viscous film down an inclined plane at high Reynolds numbers and moderate Weber numbers using energy integral method. Phys. Fluids 16 (7), 26792696.Google Scholar
Yih, C. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.Google Scholar