Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T05:50:08.019Z Has data issue: false hasContentIssue false

Three-vortex quasi-geostrophic dynamics in a two-layer fluid. Part 2. Regular and chaotic advection around the perturbed steady states

Published online by Cambridge University Press:  01 February 2013

K. V. Koshel*
Affiliation:
V.I. Il’ichev Pacific Oceanological Institute, FEB RAS, 43 Baltiyskaya Str., Vladivostok, 690041, Russia Far Eastern Federal University, 8 Sukhanova Str., Vladivostok, 690950, Russia
M. A. Sokolovskiy
Affiliation:
Water Problems Institute, RAS, 3 Gubkina Str., Moscow, 119333, Russia Southern Federal University, 8a Mil’chakova Str., Rostov-on-Don, 344090, Russia
J. Verron
Affiliation:
Laboratoire des Ecoulements Géophysiques et Industriels, CNRS, BP 52, 38041, Grenoble, CEDEX 9, France
*
Email address for correspondence: kvkoshel@poi.dvo.ru

Abstract

We study fluid-particle motion in the velocity field induced by a quasi-stationary point vortex structure consisting of one upper-layer vortex and two identical vortices in the bottom layer of a rotating two-layer fluid. The regular regimes are investigated, and the possibility of chaotic regimes (chaotic advection) under the effect of quite small non-stationary disturbances of stationary configurations has been shown. Examples of different scenarios are given for the origin and development of chaos. We analyse the role played by the stochastic layer in the processes of mixing and in the capture of fluid particles within a vortex area. We also study the influence of stratification on these effects. It is shown that regular and chaotic advection situations exhibit significant differences in the two layers.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, E. R. & Bowen, M. M. 2002 Chaotic stirring by a mesoscale surface-ocean flow. Chaos 12, 373381.CrossRefGoogle ScholarPubMed
Aref, H. 1983 Integrable, chaos and turbulent vortex motion in two-dimensional flows. Annu. Rev. Fluid Mech. 15, 345389.CrossRefGoogle Scholar
Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.CrossRefGoogle Scholar
Aref, H. 1986 The numerical experiment in fluid mechanics. J. Fluid Mech. 173, 1541.CrossRefGoogle Scholar
Aref, H., Jones, S. W., Mofina, S. & Zawadski, I. 1989 Vortices, kinematics and chaos. Physica D 37, 423440.CrossRefGoogle Scholar
Aref, H. & Pomphrey, N. 1980 Integrable and chaotic motions of four vortices. Phys. Lett. A 78, 297300.CrossRefGoogle Scholar
Aref, H. & Pomphrey, N. 1982 Integrable and chaotic motions of four vortices. I. The case of identical vortices. Proc. R. Soc. Lond. A 380, 359387.Google Scholar
Boatto, S. & Pierrehumbert, R. T. 1999 Dynamics of a passive tracer in a velocity field of four identical point vortices. J. Fluid Mech. 394, 137174.CrossRefGoogle Scholar
Budyansky, M. V., Uleysky, M. Yu. & Prants, S. V. 2009 Detection of barriers to cross-jet Lagrangian transport and its destruction in a meandering flow. Phys. Rev. E 79, 056215.CrossRefGoogle Scholar
Chirikov, B. V. 1979 A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263379.CrossRefGoogle Scholar
Cox, S. M., Drazin, P. G., Ryrie, S. C. & Slater, K. 1990 Chaotic advection of irrotational flows and of waves in fluids. J. Fluid Mech. 214, 517534.CrossRefGoogle Scholar
Duan, J. & Wiggins, S. 1996 Fluid exchange across a meandering jet with quasiperiodic variability. J. Phys. Oceanogr. 26, 11761188.2.0.CO;2>CrossRefGoogle Scholar
Eckhardt, B. & Aref, H. 1988 Integrable and chaotic motions of four vortices. II. Collision dynamics of vortex pairs. Phil. Trans. R. Soc. Lond. A 326, 655696.Google Scholar
Gledzer, A. E. 1999 Mass entrainment and release in ocean eddy structures. Izv. Atmos. Ocean. Phys. 35, 759766.Google Scholar
Gluhovsky, A. & Klyatskin, V. I. 1977 On dynamics of flipover phenomena in simple hydrodynamic models. Dokl. Earth Sci. Sec. 237, 1820.Google Scholar
Gryanik, V. M. 1988 Localized vortical disturbances – vortex charges and ‘vortex threads’ in a baroclinic differentially rotating fluid. Izv. Atmos. Ocean. Phys. 24, 12511261.Google Scholar
Gryanik, V. M., Sokolovskiy, M. A. & Verron, J. 2006 Dynamics of heton-like vortices. Regul. Chaot. Dyn. 11, 383434.CrossRefGoogle Scholar
Izrailsky, Yu. G., Koshel, K. V. & Stepanov, D. V. 2006 Determining the optimal frequency of perturbation the problem of chaotic transport of particles. Dokl. Phys. 51, 219222.Google Scholar
Izrailsky, Yu. G., Koshel, K. V. & Stepanov, D. V. 2008 Determination of optimal excitation frequency range in background flows. Chaos 18, 013107.CrossRefGoogle ScholarPubMed
Jamaloodeen, M. I. & Newton, P. K. 2007 Two-layer quasigeostrophic potential vorticity model. J. Math. Phys. 48, 065601.CrossRefGoogle Scholar
Kimura, Y. 1988 Chaos and collapse of a system of point vortices. Fluid Dyn. Res. 3, 98104.CrossRefGoogle Scholar
Kizner, Z. 2006 Stability and transitions of hetonic quartets and baroclinic modons. Phys. Fluids 18, 056601.CrossRefGoogle Scholar
Koshel, K. V. & Prants, S. V. 2006 Chaotic advection in the ocean. Physics-Uspekhi (Advances in Physical Sciences) 49, 11511178.Google Scholar
Koshel, K. V., Sokolovskiy, M. A. & Davies, P. A. 2008 Chaotic advection and nonlinear resonances in an oceanic flow above submerged obstacle. Fluid Dyn. Res. 40, 695736.CrossRefGoogle Scholar
Kozlov, V. F. & Koshel, K. V. 2001 Some features of chaos development in an oscillatory barotropic flow over an axisymmetric submerged obstacle. Izv. Atmos. Ocean. Phys. 37, 378389.Google Scholar
Kuznetsov, L. & Zaslavsky, G. M. 1998 Regular and chaotic advection in the flow field of a three-vortex system. Phys. Rev. E 58, 73307349.CrossRefGoogle Scholar
Kuznetsov, L. & Zaslavsky, G. M. 2000 Passive particle transport in three-vortex flow. Phys. Rev. E 61, 37773792.CrossRefGoogle ScholarPubMed
Lamb, H. 1932 Hydrodynamics, 6th edn. Dover.Google Scholar
Leoncini, X., Kuznetsov, L. & Zaslavsky, G. M. 2000 Motion of three vortices near collapse. Phys. Fluids 12, 19111927.CrossRefGoogle Scholar
Leoncini, X., Kuznetsov, L. & Zaslavsky, G. M. 2001 Chaotic advection near a three-vortex collapse. Phys. Rev. E 63, 036224.CrossRefGoogle Scholar
Leoncini, X. & Zaslavsky, G. M. 2002 Jets, stickiness, and anomalous transport. Phys. Rev. E 65, 046216.CrossRefGoogle ScholarPubMed
Marshall, J. & Schott, F. 1999 Open-ocean convection: observation, theory, and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
Meleshko, V. V. & van Heijst, G. J. F. 1994 Interacting two-dimensional vortex structures: Point vortices, contour kinematics and stirring properties. Chaos, Solitons Fractals 4, 9771010.CrossRefGoogle Scholar
Meleshko, V. V. & Konstantinov, M. Yu. 1993 Dynamics of Vortex Structures, p. 280. Naukova Dumka.Google Scholar
Meleshko, V. V., Konstantinov, M. Yu., Gurzhi, A. A. & Konovaljuk, T. P. 1992 Advection of a vortex pair atmosphere in a velocity field of point vortices. Phys. Fluids A 4, 27792797.CrossRefGoogle Scholar
Neu, J. C. 1984 The dynamics of a columnar vortex in an imposed strain. Phys. Fluids 27, 23972402.CrossRefGoogle Scholar
Neufeld, Z., Haynes, P. N., Garcçon, V. & Sudre, J. 2002 Ocean fertilization experiments may initiate a large-scale phytoplankton bloom. Geophys. Res. Lett. 29, 10.1029/2001GL013677.CrossRefGoogle Scholar
Ngan, K. & Shepherd, T. G. 1997 Chaotic mixing and transport in Rossby-wave critical layer. J. Fluid. Mech. 334, 315351.CrossRefGoogle Scholar
Oliva, W. M. 1991 On the chaotic behaviour and non-integrability of four vortices problem. Ann. Inst. Henri Poincaré 55, 707718.Google Scholar
Péntek, A., Tél, T. & Toroczkai, T. 1995 Chaotic advection in the velocity field of leapfrogging vortex pairs. J. Phys. A: Math. Gen. 28, 21912216.CrossRefGoogle Scholar
Perrot, X. & Carton, X. 2009 Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete Contin. Dyn. Syst. B 11, 971995.Google Scholar
Polvani, L. M. & Plumb, R. A. 1992 Rossby wave breaking, microbreaking, filamentation, and secondary vortex formation: the dynamics of a perturbed vortex. J. Atmos. Sci. 49, 462476.2.0.CO;2>CrossRefGoogle Scholar
Polvani, L. M. & Wisdom, J. 1990 Chaotic Lagrangian trajectories around an elliptical vortex parch embedded in a constant and uniform background shear flow. Phys. Fluids A 2, 123126.CrossRefGoogle Scholar
Rogachev, K. A. 2000 Rapid thermochaline transition in the Pacific western subarctic and Oyashio fresh core eddies. J. Geophys. Res. 105, 85138526.CrossRefGoogle Scholar
Rogachev, K. A. & Carmack, E. C. 2002 Evidence for the trapping and amplification of near-inertial motions in a large anticyclonic ring in the Oyashio. J. Oceanogr. 58, 763–682.CrossRefGoogle Scholar
Ryzhov, E. A. & Koshel, K. V. 2010 Chaotic transport and mixing of a passive admixture by vortex flows behind obstacles. Izv., Atmos. Ocean. Phys. 46, 184191.CrossRefGoogle Scholar
Ryzhov, E. A. & Koshel, K. V. 2011 The effects of chaotic advection in a three-layer ocean model. Izv., Atmos. Ocean. Phys. 47, 241251.CrossRefGoogle Scholar
Samelson, R. M. & Wiggins, S. 2006 Lagrangian Transport in Geophysical Jets and Waves: the Dynamical Systems Approch, Interdisciplinary Applied Mathematics , vol. 31. p. 147 Springer.Google Scholar
Sokolovskiy, M. A., Koshel, K. V. & Carton, X. 2010 Baroclinic multipole evolution in shear and strain. Geophys. Astrophys. Fluid Dyn. 105, 506535.CrossRefGoogle Scholar
Sokolovskiy, M. A., Koshel, K. V. & Verron, J. 2013 Three-vortex quasi-geostrophic dynamics in a two layer fluid. Part 1. Analysis of relative and absolute motions. J. Fluid Mech. 717, 232254.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2000 Four-vortex motion in the two layer approximation: integrable case. Regul. Chaot. Dyn. 5, 413436.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2002a New stationary solutions of the three-vortex problem in a two-layer fluid. Dokl. Phys. 47, 233237.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2002b Dynamics of the triangular two-layer vortex structures with zero total intensity. Regul. Chaot. Dyn. 7, 435472.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2004 Dynamics of the three vortices in two-layer rotating fluid. Regul. Chaot. Dyn. 9, 417438.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2006 Some properties of motion of $A+ 1$ vortices in a two-layer rotating fluid. Russ. J. Nonlinear Dyn. 2, 2754.Google Scholar
Thomson, W. 1867 On vortex atoms. Phil. Mag. 4 34, 1524.CrossRefGoogle Scholar
Trenberth, K. F. & Mo, K. C. 1985 Blocking in the Southern Hemisphere. Mon. Wea. Rev. 113, 321.2.0.CO;2>CrossRefGoogle Scholar
Velasco Fuentes, O. U. 1994 Propagation and transport properties dipolar vortices on a $\gamma $ -plane. Phys. Fluids 6, 33413352.CrossRefGoogle Scholar
Velasco Fuentes, O. U., van Heijst, G. J. F. & Cremers, B. 1995 Chaotic advection by dipolar vortices on a $\gamma $ -plane. J. Fluid Mech. 291, 139161.CrossRefGoogle Scholar
Yang, H. 1993 Chaotic mixing and transport in wave systems and atmosphere. Intl J. Bifurcation Chaos 3, 14231445.CrossRefGoogle Scholar
Yang, H. 1996a The subtropical/subpolar gyre exchange in the presence of annually migrating wind and meandering jet: water mass exchange. J. Phys. Oceanogr. 26, 115139.2.0.CO;2>CrossRefGoogle Scholar
Yang, H. 1996b Lagrangian modelling of potential vorticity homogenization and the associated front in the Gulf Stream. J. Phys. Oceanogr. 26, 24802496.2.0.CO;2>CrossRefGoogle Scholar
Yang, H. 1998 The central barrier, asymmetry and random phase in chaotic transport and mixing by Rossby waves in a jet. Int. J. Bifurcation Chaos 8, 11311152.CrossRefGoogle Scholar
Yang, H. & Liu, Z. 1994 Chaotic transport in a double gyre ocean. Geophys. Res. Lett. 21, 545548.CrossRefGoogle Scholar
Yang, H. & Liu, Z. 1997 The three-dimensional chaotic transport and the great ocean barrier. J. Phys. Oceanogr. 27, 12581273.2.0.CO;2>CrossRefGoogle Scholar
Zaslavsky, G. M. 2007 The Physics of Chaos in Hamiltonian Systems, 2nd edn, p. 316. Imperial College Press.CrossRefGoogle Scholar