Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T01:38:18.790Z Has data issue: false hasContentIssue false

Torque reduction in Taylor–Couette flows subject to an axial pressure gradient

Published online by Cambridge University Press:  13 October 2009

MARCELLO MANNA*
Affiliation:
Dipartimento di Ingegneria Meccanica per l'Energetica, Universitá di Napoli ‘Federico II’, via Claudio 21, 80125 Naples, Italy
ANDREA VACCA
Affiliation:
Dipartimento di Ingegneria Civile, Seconda Universitá di Napoli, via Roma 29, 81031 Aversa (CE), Italy
*
Email address for correspondence: marcello.manna@unina.it

Abstract

The paper investigates the phenomena occurring in a Taylor–Couette flow system subject to a steady axial pressure gradient in a small envelope of the Taylor–Reynolds state space under transitional regimes. A remarkable net power reduction necessary to simultaneously drive the two flows compared to that required to drive the Taylor–Couette flow alone is documented under non-trivial conditions. The energy transfer process characterizing the large-scale coherent structures is investigated by processing a set of statistically independent realizations obtained from direct numerical simulation. The analysis is conducted with an incompressible three-dimensional Navier–Stokes flow solver employing a spectral representation of the unknowns.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinder. J. Fluid Mech. 164, 155183.CrossRefGoogle Scholar
Avila, M., Meseguer, A. & Marques, F. 2006 Double Hopf bifurcation in corotating spiral Poiseuille flow. Phys. Fluids 18, 064101.CrossRefGoogle Scholar
Becker, K. M. & Kaye, J. 1962 Measurements of adiabatic flow in an annulus with a rotating inner cylinder. Intl J. Heat Transfer 84, 97105.CrossRefGoogle Scholar
Chandrasekhar, S. 1960 The hydrodinamic stability of viscid flow between coaxial cylinder. Proc. Natl Acad. Sci. 46 (1), 137141.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chandrasekhar, S. 1962 The stability of spiral flow between rotating cylinders. Proc. R. Soc. Lond. A 265, 188197.Google Scholar
Chung, K. C. & Astill, K. N. 1977 Hydrodynamic instability of viscous flow between rotating coaxial cylinders with fully developed axial flow. J. Fluid Mech. 81, 641655.CrossRefGoogle Scholar
Chung, S. Y. & Sung, H. J. 2005 Large-eddy simulation of turbulent flow in a concentric annulus with rotation of an inner cylinder. Intl J. Heat Fluid Flow 26, 191203.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.CrossRefGoogle Scholar
Datta, S. K. 1965 Stability of spiral flow between concentric circular cylinders at low axial Reynolds number. J. Fluid Mech. 21 (04), 635640.CrossRefGoogle Scholar
Davey, A. 1965 The growth of Taylor vortices in flow between rotating cylinders. J. Fluid Mech. 14, 336368.CrossRefGoogle Scholar
Elliott, L. 1973 Stability of a viscous fluid between rotating cylinders with axial flow and pressure gradient round the cylinders. Phys. Fluids 16, 577580.CrossRefGoogle Scholar
Escudier, M. P. & Gouldson, I. W. 1995 Concentric annular flow with centerbody rotation of a newtonian and non–newtonian and a shear thinning liquid. Intl J. Heat Fluid Flow 38, 156162.CrossRefGoogle Scholar
Fenstermacher, P. R., Swinney, H. L. & Gollub, J. P. 1979 Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103129.CrossRefGoogle Scholar
Hasoon, M. A. & Martin, B. W. 1977 The stability of viscous axial flow in an annulus with a rotating inner cylinder. Proc. R. Soc. Lond. 352 (1670), 351380.Google Scholar
Heise, M., Hoffmann, Ch., Abshagen, J., Pinter, A., Pfiste, G. & Lucke, M. 2008 Stabilization of domain walls between travelling waves by nonlinear mode coupling in Taylor–Couette flow. Phys. Rev. Lett. 100, 064501.CrossRefGoogle ScholarPubMed
Hoffmann, Ch., Lucke, M. & Pinter, A. 2004 Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow. Phys. Rev. E 69, 056309.CrossRefGoogle ScholarPubMed
Hughes, T. H. & Reid, W. H. 1968 The stability of spiral flow between rotating cylinders. Proc. R. Soc. Lond. A 265, 5791.Google Scholar
Hwang, J. Y. & Yang, K. S. 2004 Numerical study of Taylor–Couette flow with an axial flow. Comp. Fluids 33, 97118.CrossRefGoogle Scholar
Joseph, D. C. 1976 Stability of Fluid Motion. Springer.Google Scholar
Jung, S. Y. & Sung, H. J. 2006 Characterization of the three-dimensional turbulent layer in a concentric annulus with a rotating inner cylinder. Phys. Fluids 18, 1151021151013.CrossRefGoogle Scholar
van Kan, J. 1986 A second order accurate pressure correction scheme for viscous incompressible flow. J. Sci. Stat. Comput. 7, 870891.CrossRefGoogle Scholar
Kataoka, K., Doi, H. & Komai, T. 1977 Heat/mass transfer in Taylor vortex flow with constant axial flow rates. Intl J. Heat Mass Transfer 20, 5763.CrossRefGoogle Scholar
Kaye, J. & Elgar, E. C. 1958 Modes of adiabatic and adiabatic fluid flow in an annulus with an inner rotating cylinder. Trans. ASME 80, 753765.Google Scholar
Lueptow, R. M., Docter, A. & Min, K. 1992 Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluids 4 (11), 24462455.CrossRefGoogle Scholar
Manna, M. & Vacca, A. 1999 An efficient method for the solution of the incompressible Navier–Stokes equations in cylindrical geometries. J. Comput. Phys. 151, 563584.CrossRefGoogle Scholar
Marcus, P. S. 1984 Simulation of Taylor–Couette flow. Part 2. Numerical results for wavy-vortex flow with one travelling wave. J. Fluid Mech. 146, 65113.CrossRefGoogle Scholar
Moulic, S. G & Yao, L. S. 1996 Taylor–Couette instability of travelling waves with a continuous spectrum. J. Fluid Mech. 324, 181198.CrossRefGoogle Scholar
Ng, B. S. & Turner, E. R. 1982 On the linear stability of spiral flow between rotating cylinders. Proc. R. Soc. Lond. A 382 (1782), 83102.Google Scholar
Nouri, J. M. & Whitelaw, J. H. 1994 Flow of newtonian and non–newtonian fluids in a concentric annulus with rotation of the inner cylinder. Trans. ASME: J. Fluids Engng 116, 821827.Google Scholar
Orzag, S. A. & Patera, A. T. 1983 Secondary instability of wall bounded shear flows. J. Fluid Mech. 128, 347385.CrossRefGoogle Scholar
di Prima, R. C. 1960 The stability of a viscous fluid between rotating cylinders with an axial flow. J. Fluid Mech. 9 (04), 621631.CrossRefGoogle Scholar
di Prima, R. C. 1961 Stability of non-rotationally symmetric disturbances for viscous flow between rotating cylinders. Phys. Fluids 4, 751755.CrossRefGoogle Scholar
di Prima, R. C. & Pridor, A. 1979 The stability of viscous flow between rotating concentric cylinders with an axial flow. Proc. R. Soc. Lond. 366 (1727), 553573.Google Scholar
Quadrio, M. & Sibilla, S. 2000 Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217241.CrossRefGoogle Scholar
Recktenwald, A., Lucke, M. & Muller, H. W. 1993 Taylor vortex formation in axial through-flow: linear and weakly nonlinear analysis. Phys. Rev. E 48, 44444454.CrossRefGoogle ScholarPubMed
Schroeder, W. & Keller, H. B. 1990 Wavy Taylor–vortex flows via multigrid continuation method. J. Comput. Phys. 91, 197227.CrossRefGoogle Scholar
Schwarz, K. W., Springett, B. E. & Donnelly, R. J. 1964 Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech. 20, 281289.CrossRefGoogle Scholar
Shen, J. 1996 On error estimates of the projection methods for the Navier–Stokes equations: second order schemes. Math. Comput. 65 (215), 10391065.CrossRefGoogle Scholar
Snyder, H. A. 1962 Experiments on the stability of spiral flow at low axial Reynolds numbers. Proc. R. Soc. Lond. 265 (1321), 198214.Google Scholar
Takeuchi, D. I. & Jankowski, D. F. 1981 A numerical and experimental investigation of the stability of spiral Poiseuille flow. J. Fluid Mech. 102, 101126.CrossRefGoogle Scholar
Tsameret, A. & Steinberg, V. 1994 Competing states in a Couette–Taylor system with an axial flow. Phys. Rev. E 49 (5), 40774087.CrossRefGoogle Scholar
Wereley, S. T. & Lueptow, R. M. 1999 Velocity field for Taylor–Couette flow with an axial flow. Phys. Fluids 11 (12), 36373649.CrossRefGoogle Scholar
Yamada, Y. 1962 a Resistance of a flow through an annulus with an inner rotating cylinder. Bull. JSME 5 (18), 302310.CrossRefGoogle Scholar
Yamada, Y. 1962 b Torque resistance of a flow between rotating co-axial cylinders having an axial flow. Bull. JSME 5 (20), 634642.CrossRefGoogle Scholar