Article contents
Towards a phenomenological model on the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent media
Published online by Cambridge University Press: 04 June 2021
Abstract
A phenomenological model is proposed to describe the deformation and orientation dynamics of finite-sized bubbles in both quiescent and turbulent aqueous media. This model extends and generalizes a previous work that is limited to only the viscous deformation of neutrally buoyant droplets, conducted by Maffettone & Minale (J. Non-Newtonian Fluid Mech., vol. 78, 1998, pp. 227–241), into a high Reynolds number regime where the bubble deformation is dominated by flow inertia. By deliberately dividing flow inertia into contributions from the slip velocity and velocity gradients, a new formulation for bubble deformation is constructed and validated against two experiments designed to capture the deformation and orientation dynamics of bubbles simultaneously with two types of surrounding flows. The relative importance of each deformation mechanism is measured by its respective dimensionless coefficient, which can be isolated and evaluated independently through several experimental constraints without multi-variable fitting, and the results agree with the model predictions well. The acquired coefficients imply that bubbles reorient through body rotation as they rise in water at rest but through deformation along a different direction in turbulence. Finally, we provide suggestions on how to implement the proposed framework for characterizing the dynamics of deformable bubbles/drops in simulations.
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
Footnotes
This author contributed equally to this work with the first author.
References
REFERENCES
- 5
- Cited by