Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T08:09:27.578Z Has data issue: false hasContentIssue false

Towards modular analysis of tropical-cyclone structure: the boundary layer

Published online by Cambridge University Press:  14 August 2013

Francis Fendell*
Affiliation:
Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278, USA
Paritosh Mokhasi
Affiliation:
Wolfram Research Inc., Champaign, IL 61820, USA
*
Email address for correspondence: frank.fendell@ngc.com

Abstract

In the early 1970s, George Carrier and coworkers undertook a modular approach to modelling the internal thermofluid-dynamics of tropical cyclones of tropical-depression-or-greater intensity. A novel, relatively simplistic, approximate analysis of the vortex, idealized as axisymmetric, was carried out in the asymptotic limit of large Reynolds number, so that inviscid and diffusive subdomains of the structure were distinguished. Little subsequent work has followed this line of investigation. The indifference has proven problematic because accurate prediction of tropical-cycling intensity remains a challenge for operational forecasting, despite decades of effort at direct integration of comprehensive boundary/initial-value formulations. A contributing factor is that, to achieve solution in real time, such computational treatment of the entire vortex invariably resorts to coarse gridding, and key features remain inadequately resolved. Accordingly, here the modular approach is revisited, with the assistance of: recent observational insights; greatly enhanced computer-processing power; and convenient computational software, which facilitates implementation of a semi-analytic, semi-numerical methodology. Focus is largely, but not exclusively, on the dynamics and energetics occurring in the nominally kilometre-thick, ocean-surface-contiguous boundary layer, especially on influx to the boundary layer and efflux therefrom. The modular approach not only permits the boundary layer, which develops its own highly significant substructure under the high-speed portion of the inviscid vortex, to be well-resolved, but also allows the layer to be investigated in the context of the other tropical-cyclone-structure subdivisions.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, pp. 543559. Cambridge University Press.Google Scholar
Battaglia, F., Rehm, R. G. & Baum, H. R. 2000 The fluid mechanics of fire whirls: an inviscid model. Phys. Fluids 12, 28592867.CrossRefGoogle Scholar
Baum, H. & Fendell, F. 2006a HIRWG (Hurricane Intensity Research Working Group) minority report, 25 pp. http://www.sab.noaa.gov/Reports/HIRWG_finalMinority.pdf.Google Scholar
Baum, H. R. & Fendell, F. 2006b Operational hurricane intensity forecasting. Science 314, 419.CrossRefGoogle ScholarPubMed
Belcher, R. J., Burggraf, O. R. & Stewartson, K. 1972 On generalized-vortex boundary layers. J. Fluid Mech. 52, 753780.CrossRefGoogle Scholar
Bell, M. M. & Montgomery, M. T. 2008 Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel from 12 to 14 September. Mon. Weath. Rev. 136, 20232046.CrossRefGoogle Scholar
Bell, M. M., Montgomery, M. T. & Emanuel, K. A. 2012 Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci. 69, 31973222.CrossRefGoogle Scholar
Beven II, J. L. & Lixion, L. A. et al. 2008 Atlantic hurricane season of 2005. Mon. Weath. Rev. 136, 11091173.CrossRefGoogle Scholar
Black, P. G., Penney, A. B., Creasey, R. & Harr, P. A. 2012 New eyewall dropsonde observations showing rapid intensification events in Super-Typhoon Megi (2010) and Jangmi (2008). In Booklet of Abstracts, 66th Interdepartmental Hurricane Conference. Silver Spring, MD, NOAA Office of the Federal Coordinator for Meteorological Services and Supporting Research. (Also, ‘66th IHC Presentations’, www.ofcm.gov/ihc12/66IHC-Linking-File.html).Google Scholar
Bryan, G. H. & Rotunno, R. 2009 The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci. 66, 148158.CrossRefGoogle Scholar
Burggraf, O. R., Stewartson, K. & Belcher, R. 1971 Boundary layer induced by a potential vortex. Phys. Fluids 14, 18211833.CrossRefGoogle Scholar
Carrier, G. F. 1971a Swirling flow boundary layers. J. Fluid Mech. 49, 133144.CrossRefGoogle Scholar
Carrier, G. F. 1971b The intensification of hurricanes. J. Fluid Mech. 49, 145158.CrossRefGoogle Scholar
Carrier, G. F., Fendell, F., Mitchell, J. & Bronstein, M. 1994 Self-sustaining intense vortices. Physica D 77, 7796.CrossRefGoogle Scholar
Carrier, G. F., Hammond, A. L. & George, O. D. 1971 A model of the mature hurricane. J. Fluid Mech. 47, 145170.CrossRefGoogle Scholar
Cole, J. D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell.Google Scholar
Diamond, H. J. 2010 Tropical cyclones: overview. In ‘State of the climate in 2009’. Bull. Am. Meteorol. Soc. 91, 584.Google Scholar
Dunion, J. P. & Marron, C. S. 2008 A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan air layer: results from 2002. J. Clim. 21, 52425253.CrossRefGoogle Scholar
Eckert, E. R. G. & Drake, R. M. Jr 1962 Analysis of Heat and Mass Transfer, pp. 373375. McGraw-Hill.Google Scholar
Eliassen, A. & Lystad, M. 1977 The Ekman layer of a circular vortex: a numerical and theoretical study. Geophys. Norv. 31, 115.Google Scholar
Emanuel, K. 2005 Divine Wind – The History and Science of Hurricanes, pp. 54–61, 269274. Oxford University Press.CrossRefGoogle Scholar
Fendell, F. E. 1974 Tropical cyclones. In Advances in Geophysics (ed. Landsberg, H.E. & Van Mieghan, J.), vol. 17, pp. 1100. Academic.Google Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics, pp. 326332. Cambridge University Press.Google Scholar
Goldstein, S. 1960 Lectures on Fluid Mechanics, pp. 39–44, 6364. Interscience.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Haus, B. K., Joeng, D., Donelan, M. A., Zhang, J. A. & Savelyev, I. 2010 Relative rates of sea–air heat transfer and frictional drag in very high winds. Geophys. Res. Lett. 37, L07802 , doi:10.1029/2009GL042206, 5 pp.CrossRefGoogle Scholar
Holthuijsen, L. H., Powell, M. D. & Pietrzak, J. D. 2012 Wind and waves in extreme hurricanes. J. Geophys. Res. 117, C09003, doi:10.1029/2012JC007983.Google Scholar
Houghton, J. T. 1986 The Physics of Atmospheres, 2nd edn. pp. 15, 1922. Cambridge University Press.Google Scholar
Jordan, C. L. 1958 Mean soundings for the West Indies area. J. Meteorol. 15, 9197.2.0.CO;2>CrossRefGoogle Scholar
Kendall, J. M. Jr 1962 Experimental study of a compressible viscous vortex. In Tech. Rep. 32-290. Pasadena, CA, Jet Propulsion Laboratory, California Institute of Technology, 14 + vi pp.Google Scholar
Kepert, J. D. 2010 Slab and height-resolving models of the tropical cyclone boundary layer. Part I. Comparing the simulations. Q. J. R. Meteorol. Soc. 136, 16891699.Google Scholar
Knaff, J. A., Kossin, J. P. & DeMaria, M. 2003 Annular hurricanes. Weath. Forecasting 18, 204223.2.0.CO;2>CrossRefGoogle Scholar
Marks, F. M. 2003 Hurricanes. In Encyclopedia of Atmospheric Sciences (ed. Holton, J.H., Curry, J.A. & Pyle, J.A.), pp. 942966. Academic.CrossRefGoogle Scholar
Montgomery, M. T., Bell, M. M., Aberson, S. D. & Black, M. L. 2006 Hurricane Isabel (2003): new insights into the physics of intense storms. Part I. Mean vortex structure and maximum intensity estimates. Bull. Am. Meteorol. Soc. 87, 13351347.CrossRefGoogle Scholar
Montgomery, M. T., Smith, R. K. & Nguyen, S. V. 2010 Sensitivity of tropical-cyclone models to the surface drag coefficient. Q. J. R. Meteorol. Soc. 136, 19451953.CrossRefGoogle Scholar
Musk, L. F. 1988 Weather Systems, pp. 118142. Cambridge University Press.Google Scholar
Palmèn, E. & Newton, C. W. 1969 Atmospheric Circulation Systems – Their Structure and Physical Interpretation, pp. 486-491, 572577. Academic.Google Scholar
Pearson, C. E. 1986 Numerical Methods in Engineering and Science, pp. 169173. Van Nostrand Reinhold.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. pp. 179215. Springer.CrossRefGoogle Scholar
Persing, J. & Montgomery, M. T. 2003 Hurricane superintensity. J. Atmos. Sci. 60, 23492371.2.0.CO;2>CrossRefGoogle Scholar
Phillips, W. R. C. & Khoo, B. C. 1987 The boundary layer beneath a Rankine vortex. Proc. R. Soc. Lond. A 411, 177192.Google Scholar
Rappaport, E. N. & Franklin, J. L. et al. 2008 Advances and challenges at the National Hurricane Center. Weath. Forecasting 24, 395419.CrossRefGoogle Scholar
Riehl, H. 1979 Climate and Weather in the Tropics, pp. 446, 513514. Academic.Google Scholar
Sanger, N. T. 2011 An observational study of tropical cyclone spin-up in Supertyphoon Jangmi and Hurricane Georges. Doctoral thesis, 187 pp. Monterey, CA: Naval Postgraduate School.Google Scholar
Smith, R. K. & Montgomery, M. T. 2008 Balanced boundary layer used in hurricane models. Q. J. R. Meteorol. Soc. 135, 13851395.CrossRefGoogle Scholar
Smith, R. K. & Montgomery, M. T. 2012 On the existence of the logarithmic surface layer in the inner core of hurricanes. Q. J. R. Meteorol. Soc. 138, 111.Google Scholar
Smith, R. K. & Vogl, S. 2008 A simple model of the hurricane boundary layer revisited. Q. J. R. Meteorol. Soc. 135, 337351.CrossRefGoogle Scholar
Taylor, P. K. 2003 Momentum, heat, and vapour fluxes. In Encyclopedia of Atmospheric Sciences (ed. Holton, J. H., Curry, J. A. & Pyle, J. A.). pp. 93100. Academic.CrossRefGoogle Scholar
Turner, J. S. 1966 The constraints imposed on tornado-like vortices by the top and bottom boundary conditions. J. Fluid Mech. 25, 377400.CrossRefGoogle Scholar
Zhang, J. A., Black, P. G., French, J. R. & Drennan, W. M. 2008 First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett. 35, L14813 , doi:1029/2008GL034374, 4 pp.CrossRefGoogle Scholar
Zhang, J. A. & Drennan, W. M. 2012 An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci 69, 32233236.CrossRefGoogle Scholar
Zhang, J. A., Marks, F. D., Montgomery, M. T. & Lorsolo, S. 2011 An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Weath. Rev. 139, 14471462.CrossRefGoogle Scholar