Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T22:55:35.589Z Has data issue: false hasContentIssue false

Tracking interface and common curve dynamics for two-fluid flow in porous media

Published online by Cambridge University Press:  29 April 2016

J. E. McClure*
Affiliation:
Advanced Research Computing, Virginia Tech, Blacksburg, VI 24061-0123, USA
M. A. Berrill
Affiliation:
Scientific Computing Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
W. G. Gray
Affiliation:
Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
C. T. Miller
Affiliation:
Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
*
Email address for correspondence: mcclurej@vt.edu

Abstract

The movements of fluid–fluid interfaces and the common curve are an important aspect of two-fluid-phase flow through porous media. The focus of this work is to develop, apply and evaluate methods to simulate two-fluid-phase flow in porous medium systems at the microscale and to demonstrate how these results can be used to support evolving macroscale models. Of particular concern is the problem of spurious velocities that confound the accurate representation of interfacial dynamics in such systems. To circumvent this problem, a combined level-set and lattice-Boltzmann method is advanced to simulate and track the dynamics of the fluid–fluid interface and of the common curve during simulations of two-fluid-phase flow in porous media. We demonstrate that the interface and common curve velocities can be determined accurately, even when spurious currents are generated in the vicinity of interfaces. Static and dynamic contact angles are computed and shown to agree with existing slip models. A resolution study is presented for dynamic drainage and imbibition in a sphere pack, demonstrating the sensitivity of averaged quantities to resolution.

Type
Papers
Copyright
© Cambridge University Press 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrenholz, B., Niessner, J., Helmig, R. & Krafczyk, M. 2011 Pore-scale determination of parameters for macroscale modeling of evaporation processes in porous media. Water Resour. Res. 47 (7), W07543.Google Scholar
Ahrenholz, B., Toelke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M. & Durner, W. 2008 Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Resour. 31 (9), 11511173.Google Scholar
Andrew, M., Bijeljic, B. & Blunt, M. J. 2014 Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography. Adv. Water Resour. 68, 2431.Google Scholar
Armstrong, R. T., Porter, M. L. & Wildenschild, D. 2012 Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 46, 5562.Google Scholar
Aulisa, E., Manservisi, S. & Scardovelli, R. 2006 A novel representation of the surface tension force for two-phase flow with reduced spurious currents. Comput. Meth. Appl. Mech. Engng 195 (44–47), 62396257.Google Scholar
Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier.Google Scholar
Blake, Terence D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299 (1), 113.Google Scholar
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A. & Pentland, C. 2013 Pore-scale imaging and modelling. Adv. Water Resour. 51, 197216.Google Scholar
Blunt, M. J. & Hilpert, M. 2001 Editorial (to the special issue on pore-scale modeling). Adv. Water Resour. 24 (3–4), 231232.Google Scholar
Brochardwyart, F. & DeGennes, P. G. 1992 Dynamics of partial wetting. Adv. Colloid Interface Sci. 39, 111.Google Scholar
Celia, M. A., Reeves, P. C. & Ferrand, L. C. 1995 Recent advances in pore scale models for multiphase flow in porous media. Rev. Geophys. 33 (Suppl.), 10491057.Google Scholar
Chang, C.-H., Deng, X. & Theofanous, T. G. 2013 Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method. J. Comput. Phys. 242, 946990.Google Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.Google Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. 1. Viscous-flow. J. Fluid Mech. 168, 169194.Google Scholar
Dalla, E., Hilpert, M. & Miller, C. T. 2002 Computation of the interfacial area for two-fluid porous medium systems. J. Contam. Hydrol. 56 (1–2), 2548.Google Scholar
Dhori, P. K. & Slattery, J. C. 1997 Common line motion. 1. Implications of entropy inequality. J. Non-Newtonian Fluid Mech. 71 (3), 197213.Google Scholar
Ginzburg, I. & d’Humiéres, D. 2003 Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68, 066614.Google Scholar
Gray, W. G., Dye, A. L., McClure, J. E., Pyrak-Nolte, L. J. & Miller, C. T. 2015 On the dynamics and kinematics of two-fluid-phase flow in porous media. Water Resour. Res. 51 (7), 53655381.Google Scholar
Gray, W. G. & Miller, C. T. 2005 Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv. Water Resour. 28 (2), 161180.Google Scholar
Gray, W. G. & Miller, C. T. 2014 Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Springer.Google Scholar
Held, R. J. & Celia, M. A. 2001a Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines. Adv. Water Resour. 24 (3–4), 325343.Google Scholar
Held, R. J. & Celia, M. A. 2001b Pore-scale modeling extension of constitutive relationships in the range of residual saturations. Water Resour. Res. 37 (1), 165170.Google Scholar
Herring, A. L., Harper, E. J., Andersson, L., Sheppard, A., Bay, B. K. & Wildenschild, D. 2013 Effect of fluid topology on residual nonwetting phase trapping: implications for geologic CO2 sequestration. Adv. Water Resour. 62 (A), 4758.Google Scholar
Hou, S. L., Shan, X. W., Zuo, Q. S., Doolen, G. D. & Soll, W. E. 1997 Evaluation of two lattice Boltzmann models for multiphase flows. J. Comput. Phys. 138 (2), 695713.Google Scholar
Huang, H., Thorne, D. T. J., Schaap, M. G. & Sukop, M. C. 2007 Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76 (6, Part 2), 066701.Google Scholar
Hubbert, M. K. 1956 Darcy’s law and the field equations of the flow of underground fluids. Trans. AIME 207, 222239.Google Scholar
Hysing, S. 2012 Mixed element FEM level set method for numerical simulation of immiscible fluids. J. Comput. Phys. 231 (6), 24492465.Google Scholar
Jackson, A. S., Miller, C. T. & Gray, W. G. 2009 Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 6. Two-fluid-phase flow. Adv. Water Resour. 32 (6), 779795.Google Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.Google Scholar
Jafari, A., Shirani, E. & Ashgriz, N. 2007 An improved three-dimensional model for interface pressure calculations in free-surface flows. Intl J. Comput. Fluid Dyn. 21 (2), 8797.Google Scholar
Jiang, T. S., Oh, S. G. & Slattery, J. C. 1979 Correlation for dynamic contact-angle. J. Colloid Interface Sci. 69 (1), 7477.Google Scholar
Joekar-Niasar, V., van Dijke, M. I. J. & Hassanizadeh, S. M. 2012 Pore-scale modeling of multiphase flow and transport: achievements and perspectives. Transp. Porous Med. 94 (2, SI), 461464.Google Scholar
Joekar-Niasar, V., Hassanizadeh, S. & Leijnse, A. 2008 Insights into the relationship among capillary pressure, saturation, interfacial area and relative permeability using pore-scale network modeling. Transp. Porous Med. 74, 201219.Google Scholar
Joekar-Niasar, V. & Hassanizadeh, S. M. 2012 Uniqueness of specific interfacial area–capillary pressure–saturation relationship under non-equilibrium conditions in two-phase porous media flow. Transp. Porous Med. 94 (2, Spec. Iss.), 465486.Google Scholar
Joekar-Niasar, V., Hassanizadeh, S. M. & Dahle, H. K. 2010a Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. J. Fluid Mech. 655, 3871.Google Scholar
Joekar-Niasar, V., Prodanović, M., Wildenschild, D. & Hassanizadeh, S. M. 2010b Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resour. Res. 46, W06526.Google Scholar
Kuzmin, A. & Mohamad, A. A. 2010 Multirange multi-relaxation time Shan–Chen model with extended equilibrium. Comput. Maths Applics 59 (7), 22602270.Google Scholar
Lallemand, P. & Luo, L. S. 2003 Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406421.Google Scholar
Landry, C. J., Karpyn, Z. T. & Piri, M. 2011 Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs. Geofluids 11 (2), 209227.Google Scholar
Latva-Kokko, M. & Rothman, D. 2005 Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72 (4, Part 2), 046701.Google Scholar
Latva-Kokko, M. & Rothman, D. H. 2007 Scaling of dynamic contact angles in a lattice-Boltzmann model. Phys. Rev. Lett. 98 (25), 254503.Google Scholar
Lee, T. 2009 Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids. Comput. Math. Appl. 58 (5), 987994.Google Scholar
Lee, T. & Fischer, P. F. 2006 Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E 74 (4, Part 2), 046709.Google Scholar
Lee, T. & Lin, C. 2005 A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206 (1), 1647.Google Scholar
Lee, T. & Liu, L. 2008 Wall boundary conditions in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E 78 (1, Part 2), 017702.Google Scholar
Li, D. M. & Slattery, J. C. 1991 Analysis of the moving apparent common line and dynamic contact-angle formed by a draining film. J. Colloid Interface Sci. 143 (2), 382396.Google Scholar
Li, H., Pan, C. & Miller, C. T. 2005 Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys. Rev. E. 72 (2), 026705 114.Google Scholar
Luckner, L., van Genuchten, M. T. & Nielsen, D. R. 1989 A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25 (10), 21872193.Google Scholar
Martys, N. & Chen, H. 1996 Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53 (1b), 743750.Google Scholar
McClure, J. E., Adalsteinsson, D., Pan, C., Gray, W. G. & Miller, C. T. 2007 Approximation of interfacial properties in multiphase porous medium systems. Adv. Water Resour. 30 (3), 354365.Google Scholar
McClure, J. E., Adalsteinsson, D., Wildenschild, D., Gray, W. G. & Miller, C. T. 2006 Computation of interfacial areas, common curve lengths, and interfacial curvatures from experimentally derived data. In Proceedings of the 16th International Conference on Computational Methods in Water Resources (CMWR XVI), Copenhagen, Denmark, 19–22 June 2006.Google Scholar
McClure, J. E., Pan, C., Adalsteinsson, D., Gray, W. G. & Miller, C. T. 2004 Estimating interfacial areas resulting from lattice Boltzmann simulation of two-fluid-phase flow in a porous medium. In Proceedings of the XVth International Conference on Computational Methods in Water Resources (ed. Miller, C. T., Farthing, M. W., Gray, W. G. & Pinder, G. F.), pp. 2335. Elsevier.Google Scholar
McClure, J. E., Prins, J. F. & Miller, C. T. 2014a A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU-GPU systems. Comput. Phys. Commun. 185 (7), 18651874.Google Scholar
McClure, J. E., Wang, H., Prins, J. F., Miller, C. T. & Feng, W. 2014b Petascale application of a coupled CPU-GPU algorithm for simulation and analysis of multiphase flow solutions in porous medium systems. In 28th IEEE International Parallel and Distributed Processing Symposium, Phoenix, Arizona.Google Scholar
Miller, C. T., Dawson, C. N., Farthing, M. W., Hou, T. Y., Huang, J. F., Kees, C. E., Kelley, C. T. & Langtangen, H. P. 2013 Numerical simulation of water resources problems: models, methods, and trends. Adv. Water Resour. 51, 405437.Google Scholar
Miller, C. T. & Gray, W. G. 2005 Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 2. Foundation. Adv. Water Resour. 28 (2), 181202.Google Scholar
Niessner, J. & Hassanizadeh, S. M. 2008 A model for two-phase flow in porous media including fluid–fluid interfacial area. Water Resour. Res. 44, W08439.Google Scholar
Nourgaliev, R. R., Liou, M. S. & Theofanous, T. G. 2008 Numerical prediction of interfacial instabilities: sharp interface method (SIM). J. Comput. Phys. 227 (8), 39403970.Google Scholar
Ovaysi, S., Wheeler, M. F. & Balhoff, M. 2014 Quantifying the representative size in porous media. Transp. Porous Med. 104 (2), 349362.Google Scholar
Pan, C., Hilpert, M. & Miller, C. T. 2004 Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40 (1), W01501.Google Scholar
Pan, C., Luo, L.-S. & Miller, C. T. 2006 An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35 (8–9), 898909.Google Scholar
Pomeau, Y. 2002 Recent progress in the moving contact line problem: a review. C. R. Méc. 330 (3), 207222.Google Scholar
Porter, M. L., Schaap, M. G. & Wildenschild, D. 2009 Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media. Adv. Water Resour. 32 (11), 16321640.Google Scholar
Porter, M. L. & Wildenschild, D. 2010 Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study. Comput. Geosci. 14 (1), 1530.Google Scholar
Porter, M. L., Wildenschild, D., Grant, G. & Gerhard, J. I. 2010 Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL–water–glass bead system. Water Resour. Res. 46, W08512.Google Scholar
Raeesi, B. & Piri, M. 2009 The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: a pore-scale network modeling approach. J. Hydrol. 376, 337352.Google Scholar
Reeves, P. C. & Celia, M. A. 1996 A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resour. Res. 32 (8), 23452358.Google Scholar
Sagis, L. M. C. & Slattery, J. C. 1995 Incorporation of line quantities in the continuum description for multiphase, multicomponent bodies with intersecting dividing surfaces. 1. Kinematics and conservation principles. J. Colloid Interface Sci. 176 (1), 150164.Google Scholar
Schaap, M. G., Porter, M. L., Christensen, B. S. B. & Wildenschild, D. 2007 Comparison of pressure–saturation characteristics derived from computed tomography and lattice Boltzmann simulations. Water Resour. Res. 43.Google Scholar
Seppecher, P. 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Engng Sci. 34 (9), 977992.CrossRefGoogle Scholar
Sethian, J. A. 1999 Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press.Google Scholar
Shan, X. & Chen, H. 1994 Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49 (4), 29412948.Google Scholar
Shan, X. W. & Chen, H. 2007 A general multiple-relaxation-time Boltzmann collision model. Intl J. Mod. Phys. C 18 (4), 635643.Google Scholar
Sheng, P. & Zhou, M. 1992 Immiscible-fluid displacement: contact-line dynamics and the velocity-dependent capillary pressure. Phys. Rev. A 45, 56945708.Google Scholar
Shikhmurzaev, Y. D. 1997 Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211249.Google Scholar
Siebold, A., Nardin, M., Schultz, J., Walliser, A. & Oppliger, M. 2000 Effect of dynamic contact angle on capillary rise phenomena. Colloids Surf. A 161 (1), 8187.Google Scholar
Slattery, J. C., Oh, E. S. & Fu, K. B. 2004 Extension of continuum mechanics to the nanoscale. Chem. Engng Sci. 59 (21), 46214635.Google Scholar
Whitaker, S. 1986 Flow in porous media II: the governing equations for immiscible, two-phase flow. Transp. Porous Med. 1, 105125.CrossRefGoogle Scholar
Wood, B. D. 2009 The role of scaling laws in upscaling. Adv. Water Resour. 32 (5), 723736.Google Scholar
Zahedi, S., Kronbichler, M. & Kreiss, G. 2012 Spurious currents in finite element based level set methods for two-phase flow. Intl J. Numer. Meth. Fluids 69 (9), 14331456.Google Scholar
Zheng, L., Lee, T., Guo, Z. & Rumschitzki, D. 2014 Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases. Phys. Rev. E 89 (3), 033302.Google Scholar