Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T15:53:17.381Z Has data issue: false hasContentIssue false

Translational and angular velocities statistics of inertial prolate ellipsoids in a turbulent channel flow up to Reτ = 1000

Published online by Cambridge University Press:  29 June 2023

Antoine Michel
Affiliation:
Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France
Boris Arcen*
Affiliation:
Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France
*
Email address for correspondence: boris.arcen@univ-lorraine.fr

Abstract

Direct numerical simulations of the turbulent flow in a channel are conducted up to $Re_{\tau }=1000$ to examine the influence of the friction Reynolds number on the translational and angular velocities of inertial, prolate ellipsoids. The quadrant distribution of the turbulent events seen by the particles is not significantly affected by the value of $Re_{\tau }$, but subtle modifications take place, depending on the position in the channel and on the particle relaxation time. Overall, the influence of $Re_{\tau }$ on the first and second statistical moments of the ellipsoids translational velocity is the same as that observed for the fluid velocity. The weak dependence of these statistics to the particle shape previously observed at low Reynolds number remains at higher values of $Re_{\tau }$. Similarly, the mean and root mean square (r.m.s.) of the angular velocity of the fluid seen by the particles weakly depend on particle shape and they have the same dependence to $Re_{\tau }$ as the angular velocity statistics of the carrier fluid. Particle angular velocity statistics are more strongly affected by the flow Reynolds number due to the evolution of the complex shape and inertia dependent rotation orbits with $Re_{\tau }$. In the near-wall region the average angular velocity of weakly inertial ellipsoids increases with $Re_{\tau }$ due to their stronger alignment with the mean fluid vorticity. Furthermore, the r.m.s. of the wall-normal component of the angular velocity of more inertial ellipsoids increases with $Re_{\tau }$ owing to the larger fluctuations of the angle between the particle major axis and the velocity-gradient plane.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi Hoseini, A., Lundell, F. & Andersson, H.I. 2015 Finite-length effects on dynamical behavior of rod-like particles in wall-bounded turbulent flow. Intl J. Multiphase Flow 76, 1321.CrossRefGoogle Scholar
Alipour, M., Paoli, M.D., Ghaemi, S. & Soldati, A. 2021 Long non-axisymmetric fibres in turbulent channel flow. J. Fluid Mech. 916, A3.CrossRefGoogle Scholar
Arcen, B., Ouchene, R., Khalij, M. & Tanière, A. 2017 Prolate spheroidal particles’ behavior in a vertical wall-bounded turbulent flow. Phys. Fluids 29 (9), 093301.CrossRefGoogle Scholar
Baker, L.J. & Coletti, F. 2022 Experimental investigation of inertial fibres and disks in a turbulent boundary layer. J. Fluid Mech. 943, A27.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A 365 (1852), 665681.CrossRefGoogle ScholarPubMed
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Bernstein, O. & Shapiro, M. 1994 Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows. J. Aerosol Sci. 25 (1), 113136.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16, 242251.CrossRefGoogle Scholar
Capone, A., Felice, F.D. & Pereira, F.A. 2021 Flow-particle coupling in a channel flow laden with elongated particles: the role of aspect ratio. J. Mar. Sci. Engng 9 (12), 1388.CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2016 On fiber behavior in turbulent vertical channel flow. Chem. Engng Sci. 153, 7586.CrossRefGoogle Scholar
Cui, Y., Ravnik, J., Hriberšek, M. & Steinmann, P. 2018 A novel model for the lift force acting on a prolate spheroidal particle in an arbitrary non-uniform flow. Part I. Lift force due to the streamwise flow shear. Intl J. Multiphase Flow 104, 103112.CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2016 The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. J. Fluid Mech. 791, 631703.CrossRefGoogle Scholar
Dotto, D., Soldati, A. & Marchioli, C. 2019 Deformation of flexible fibers in turbulent channel flow. Meccanica 55 (2), 343356.CrossRefGoogle Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J.R. & Mehlig, B. 2015 Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27 (6), 063301.CrossRefGoogle Scholar
Fong, K.O., Amili, O. & Coletti, F. 2019 Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872, 367406.CrossRefGoogle Scholar
Font-Muñoz, J.S., Jordi, A., Anglès, S. & Basterretxea, G. 2015 Estimation of phytoplankton size structure in coastal waters using simultaneous laser diffraction and fluorescence measurements. J. Plankton Res. 37 (4), 740751.CrossRefGoogle Scholar
Fröhlich, K., Meinke, M. & Schröder, W. 2020 Correlations for inclined prolates based on highly resolved simulations. J. Fluid Mech. 901, A5.CrossRefGoogle Scholar
Gallily, I. & Cohen, A.-H. 1979 On the orderly nature of the motion of nonspherical aerosol particles. II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle. J. Colloid Interface Sci. 68 (2), 338356.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Jie, Y., Xu, C., Dawson, J.R., Andersson, H.I. & Zhao, L. 2019 Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow. J. Turbul. 20 (7), 424438.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995 Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Le, H. & Moin, P. 1991 An improvement of fractional step methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 92, 369379.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_{\tau }\approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Liljegren, L.M. 1993 The effect of a mean fluid velocity gradient on the streamwise velocity variance of a particle suspended in a turbulent flow. Intl J. Multiphase Flow 19, 471484.CrossRefGoogle Scholar
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81 (1), 016323.CrossRefGoogle ScholarPubMed
Lundell, F., Söderberg, L.D. & Alfredsson, P.H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43 (1), 195217.CrossRefGoogle Scholar
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22 (3), 033301.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marchioli, C., Zhao, L. & Andersson, H.I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28 (1), 013301.CrossRefGoogle Scholar
Michel, A. & Arcen, B. 2021 a Long time statistics of prolate spheroids dynamics in a turbulent channel flow. Intl J. Multiphase Flow 135, 103525.CrossRefGoogle Scholar
Michel, A. & Arcen, B. 2021 b Reynolds number effect on the concentration and preferential orientation of inertial ellipsoids. Phys. Rev. Fluids 6 (11), 114305.CrossRefGoogle Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 a Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20 (9), 093302.CrossRefGoogle Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 b On the orientation of ellipsoidal particles in a turbulent shear flow. Intl J. Multiphase Flow 34 (7), 678683.CrossRefGoogle Scholar
Naso, A., Jucha, J., Lévêque, E. & Pumir, A. 2018 Collision rate of ice crystals with water droplets in turbulent flows. J. Fluid Mech. 845, 615641.CrossRefGoogle Scholar
Ouchene, R., Khalij, M., Arcen, B. & Tanière, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 3343.CrossRefGoogle Scholar
Ouchene, R., Polanco, J.I., Vinkovic, I. & Simoëns, S. 2018 Acceleration statistics of prolate spheroidal particles in turbulent channel flow. J. Turbul. 19 (10), 827848.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G.A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109 (13), 134501.CrossRefGoogle ScholarPubMed
Parsheh, M., Brown, M.L. & Aidun, C.K. 2005 On the orientation of stiff fibres suspended in turbulent flow in a planar contraction. J. Fluid Mech. 545, 245269.CrossRefGoogle Scholar
Picano, F., Sardina, G. & Casciola, C.M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 093305.CrossRefGoogle Scholar
Ravnik, J., Marchioli, C. & Soldati, A. 2018 Application limits of Jeffery's theory for elongated particle torques in turbulence: a DNS assessment. Acta Mech. 229 (2), 827839.CrossRefGoogle Scholar
Robinson, S.K. 1991 The kinetics of turbulent boundary layer structure. PhD thesis, Stanford University, Stanford, CA.Google Scholar
Sanjeevi, S.K.P., Kuipers, J.A.M. & Padding, J.T. 2018 Drag, lift and torque correlations for non-spherical particles from stokes limit to high Reynolds numbers. Intl J. Multiphase Flow 106, 325337.CrossRefGoogle Scholar
Shaik, S., Kuperman, S., Rinsky, V. & van Hout, R. 2020 Measurements of length effects on the dynamics of rigid fibers in a turbulent channel flow. Phys. Rev. Fluids 5 (11), 114309.CrossRefGoogle Scholar
Shapiro, M. & Goldenberg, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24 (1), 6587.CrossRefGoogle Scholar
Siewert, C., Kunnen, R.P.J., Meinke, M. & Schröder, W. 2014 a Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.CrossRefGoogle Scholar
Siewert, C., Kunnen, R.P.J. & Schröder, W. 2014 b Collision rates of small ellipsoids settling in turbulence. J. Fluid Mech. 758, 686701.CrossRefGoogle Scholar
Timmermans, L.J.P., Minev, P.D. & van de Vosse, F.N. 1996 An approximate projection scheme for incompressible flow using spectral elements. Intl J. Numer. Meth. Fluids 22 (7), 673688.3.0.CO;2-O>CrossRefGoogle Scholar
Vinkovic, I., Doppler, D., Lelouvetel, J. & Buffat, M. 2011 Direct numerical simulation of particle interaction with ejections in turbulent channel flows. Intl J. Multiphase Flow 37 (2), 187197.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.CrossRefGoogle Scholar
Vreman, A.W. & Kuerten, J.G.M. 2014 Comparison of direct numerical simulation databases of turbulent channel flow at $Re_{\tau }= 180$. Phys. Fluids 26 (1), 015102.CrossRefGoogle Scholar
van Wachem, B., Zastawny, M., Zhao, F. & Mallouppas, G. 2015 Modelling of gas–solid turbulent channel flow with non-spherical particles with large stokes numbers. Intl J. Multiphase Flow 68, 8092.CrossRefGoogle Scholar
Wallace, J.M., Eckelmann, H. & Brodkey, R.S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Yuan, W., Zhao, L., Challabotla, N.R., Andersson, H.I. & Deng, J. 2018 On wall-normal motions of inertial spheroids in vertical turbulent channel flows. Acta Mech. 229 (7), 29472965.CrossRefGoogle Scholar
Zastawny, M., Mallouppas, G., Zhao, F. & van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.CrossRefGoogle Scholar
Zhang, H., Ahmadi, G., Fan, F.-G. & McLaughlin, J.B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27 (6), 9711009.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.CrossRefGoogle Scholar
Zhao, L., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2015 b Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115 (24), 244501.CrossRefGoogle ScholarPubMed
Zhao, L., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2019 Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia. J. Fluid Mech. 876, 1954.CrossRefGoogle Scholar
Zhao, F., George, W.K. & van Wachem, B.G.M. 2015 a Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and stokes number. Phys. Fluids 27 (8), 083301.CrossRefGoogle Scholar
Zhao, L., Marchioli, C. & Andersson, H.I. 2014 Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26 (6), 063302.CrossRefGoogle Scholar