Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:41:25.691Z Has data issue: false hasContentIssue false

Turbidity currents propagating down an inclined slope: particle auto-suspension

Published online by Cambridge University Press:  09 January 2023

Jiafeng Xie
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China
Peng Hu*
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, PR China
Chenlin Zhu*
Affiliation:
Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province, China Jiliang University, Hangzhou 310018, PR China
Zhaosheng Yu
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, PR China
Thomas Pähtz
Affiliation:
Ocean College, Zhejiang University, Zhoushan 316021, PR China Donghai Lab, Zhoushan 316021, PR China
*
Email addresses for correspondence: pengphu@zju.edu.cn, zhuclgary@foxmail.com
Email addresses for correspondence: pengphu@zju.edu.cn, zhuclgary@foxmail.com

Abstract

The turbidity current (TC), a ubiquitous fluid–particle coupled phenomenon in the natural environment and engineering, can transport over long distances on an inclined terrain due to the suspension mechanism. A large-eddy simulation and discrete element method coupled model is employed to simulate the particle-laden gravity currents over the inclined slope in order to investigate the auto-suspension mechanism from a Lagrangian perspective. The particle Reynolds number in our TC simulation is $0.01\sim 0.1$ and the slope angle is $1/20 \sim 1/5$. The influences of initial particle concentration and terrain slope on the particle flow regimes, particle movement patterns, fluid–particle interactions, energy budget and auto-suspension index are explored. The results indicate that the auto-suspension particles predominantly appear near the current head and their number increases and then decreases during the current evolution, which is positively correlated with the coherent structures around the head. When the turbidity current propagates downstream, the average particle Reynolds number of the auto-suspension particles remains basically unchanged, and is higher than that of other transported particles. The average particle Reynolds number of the transported particles exhibits a negative correlation with the Reynolds number of the current. Furthermore, the increase in particle concentration will enhance the particle velocity, which allows the turbidity current to advance faster and improves the perpendicular support, thereby increasing the turbidity current auto-suspension capacity. Increasing slope angle will result in a slightly larger front velocity, while the effect of that on the total force is insignificant.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altinakar, M.S., Graf, W.H. & Hopfinger, E.J. 1996 Flow structure in turbidity currents. J. Hydraul. Res. 34 (5), 713718.CrossRefGoogle Scholar
Andrieux, O., Cooper, C.K. & Wood, J. 2013 Turbidity current measurements in the congo canyon. In Offshore Technology Conference. OnePetro.CrossRefGoogle Scholar
Armenio, V., Piomelli, U. & Fiorotto, V. 1999 Effect of the subgrid scales on particle motion. Phys. Fluids 11 (10), 30303042.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.CrossRefGoogle Scholar
Bagnold, R.A. 1962 Auto-suspension of transported sediment; turbidity currents. Proc. R. Soc. Lond. A 265 (1322), 315319.Google Scholar
Biegert, E., Vowinckel, B., Ouillon, R. & Meiburg, E. 2017 High-resolution simulations of turbidity currents. Prog. Earth Planet. Sci. 4 (1), 33.CrossRefGoogle Scholar
Blais, B., Lassaigne, M., Goniva, C., Fradette, L. & Bertrand, F. 2016 Development of an unresolved CFD–DEM model for the flow of viscous suspensions and its application to solid–liquid mixing. J. Comput. Phys. 318, 201221.CrossRefGoogle Scholar
Blanchette, F., Strauss, M., Meiburg, E., Kneller, B. & Glinsky, M.E. 2005 High-resolution numerical simulations of resuspending gravity currents: conditions for self-sustainment. J. Geophys. Res. 110 (C12), C12022.Google Scholar
Bonnecaze, R.T., Huppert, H.E. & Lister, J.R. 1993 Particle-driven gravity currents. J. Fluid Mech. 250, 339369.CrossRefGoogle Scholar
Chu, K.W., Wang, B., Yu, A.B. & Vince, A. 2009 CFD-DEM modelling of multiphase flow in dense medium cyclones. Powder Technol. 193 (3), 235247.CrossRefGoogle Scholar
Cundall, P.A. & Strack, O.D.L. 1979 A discrete numerical model for granular assemblies. Gèotechnique 29 (1), 4765.CrossRefGoogle Scholar
Dai, A. 2015 High-resolution simulations of downslope gravity currents in the acceleration phase. Phys. Fluids 27 (7), 076602.CrossRefGoogle Scholar
Dai, A. & Huang, Y.-L. 2022 On the merging and splitting processes in the lobe-and-cleft structure at a gravity current head. J. Fluid Mech. 930, A6.CrossRefGoogle Scholar
Darabian, M., Khavasi, E., Eyvazian, A. & Talebizadehsardari, P. 2021 Numerical simulation of stratified intrusive gravity current in three-dimensional state due to the presence of particles using large eddy simulation method. J. Braz. Soc. Mech. Sci. Engng 43 (5), 257.CrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid–particle interaction systems. Intl J. Multiphase Flow 20 (1), 153159.CrossRefGoogle Scholar
Durán, O., Claudin, P. & Andreotti, B. 2011 On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 3 (3), 243270.CrossRefGoogle Scholar
Elghannay, H. & Tafti, D. 2018 LES-DEM simulations of sediment transport. Intl J. Sedim. Res. 33 (2), 137148.CrossRefGoogle Scholar
Elghobashi, S. & Truesdell, G.C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.CrossRefGoogle Scholar
Espath, L.F.R., Pinto, L.C., Laizet, S. & Silvestrini, J.H. 2015 High-fidelity simulations of the lobe-and-cleft structures and the deposition map in particle-driven gravity currents. Phys. Fluids 27 (5), 056604.CrossRefGoogle Scholar
Farizan, A., Yaghoubi, S., Firoozabadi, B. & Afshin, H. 2019 Effect of an obstacle on the depositional behaviour of turbidity currents. J. Hydraul. Res. 57 (1), 7589.CrossRefGoogle Scholar
Fine, I.V., Rabinovich, A.B., Bornhold, B.D., Thomson, R.E. & Kulikov, E.A. 2005 The grand banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar. Geol. 215 (1–2), 4557.CrossRefGoogle Scholar
Francisco, E.P., Espath, L.F.R. & Silvestrini, J.H. 2017 Direct numerical simulation of bi-disperse particle-laden gravity currents in the channel configuration. Appl. Math. Model. 49, 739752.CrossRefGoogle Scholar
Gladstone, C., Phillips, J.C. & Sparks, R.S.J. 1998 Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45, 833843.CrossRefGoogle Scholar
Goodarzi, D., Sookhak Lari, K., Khavasi, E. & Abolfathi, S. 2020 Large eddy simulation of turbidity currents in a narrow channel with different obstacle configurations. Sci. Rep. 10 (1), 12814.CrossRefGoogle Scholar
Gui, N., Yang, X., Tu, J. & Jiang, S. 2018 A fine LES-DEM coupled simulation of gas-large particle motion in spouted bed using a conservative virtual volume fraction method. Powder Technol. 330, 174189.CrossRefGoogle Scholar
He, Z., Zhao, L., Hu, P., Yu, C. & Lin, Y.-T. 2018 Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Adv. Water. Resour. 119, 164177.CrossRefGoogle Scholar
Hitomi, J., Nomura, S., Murai, Y., De Cesare, G., Tasaka, Y., Takeda, Y., Park, H.J. & Sakaguchi, H. 2021 Measurement of the inner structure of turbidity currents by ultrasound velocity profiling. Intl J. Multiphase Flow 136, 103540.CrossRefGoogle Scholar
Hu, P., Tao, J., Li, W. & He, Z. 2020 Layer-averaged numerical study on effect of Reynolds number on turbidity currents. J. Hydraul. Res. 58 (4), 628637.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program.Google Scholar
Jing, L., Kwok, C.Y., Leung, Y.F. & Sobral, Y.D. 2016 Extended CFD–DEM for free-surface flow with multi-size granules. Intl J. Numer. Anal. Meth. Geomech. 40 (1), 6279.CrossRefGoogle Scholar
Katopodes, N.D. 2018 Free-Surface Flow: Environmental Fluid Mechanics. Butterworth-Heinemann.Google Scholar
Khavasi, E. & Firoozabadi, B. 2019 Linear spatial stability analysis of particle-laden stratified shear layers. J. Braz. Soc. Mech. Sci. Engng 41 (6), 246.CrossRefGoogle Scholar
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. 2012 Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. 12 (2–3), 140152.CrossRefGoogle Scholar
Knapp, R.T. 1938 Energy-balance in stream-flows carrying suspended load. EOS Trans. AGU 19 (1), 501505.CrossRefGoogle Scholar
Koohandaz, A., Khavasi, E., Eyvazian, A. & Yousefi, H. 2020 Prediction of particles deposition in a dilute quasi-steady gravity current by lagrangian markers: effect of shear-induced lift force. Sci. Rep. 10 (1), 16673.CrossRefGoogle Scholar
Kyrousi, F., Leonardi, A., Roman, F., Armenio, V., Zanello, F., Zordan, J., Juez, C. & Falcomer, L. 2018 Large eddy simulations of sediment entrainment induced by a lock-exchange gravity current. Adv. Water Resour. 114, 102118.CrossRefGoogle Scholar
Lee, C.-H. 2019 Multi-phase flow modeling of submarine landslides: transformation from hyperconcentrated flows into turbidity currents. Adv. Water Resour. 131, 103383.CrossRefGoogle Scholar
Li, L. & Gong, C. 2018 Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel thalweg in the rio muni basin: A joint 3-d seismic and numerical approach. J. Geophys. Res. 123 (9), 20872106.CrossRefGoogle Scholar
Li, Y., Xu, Y. & Thornton, C. 2005 A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles. Powder Technol. 160 (3), 219228.CrossRefGoogle Scholar
Liu, J.T., Wang, Y.-H., Yang, R.J., Hsu, R.T., Kao, S.-J., Lin, H.-L. & Kuo, F.H. 2012 Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. J. Geophys. Res. 117 (C4), C04033.Google Scholar
Loth, E. & Dorgan, A.J. 2009 An equation of motion for particles of finite Reynolds number and size. Environ. Fluid Mech. 9 (2), 187206.CrossRefGoogle Scholar
Maurin, R., Chauchat, J. & Frey, P. 2018 Revisiting slope influence in turbulent bedload transport: consequences for vertical flow structure and transport rate scaling. J. Fluid Mech. 839, 135156.CrossRefGoogle Scholar
McLaughlin, J.B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.CrossRefGoogle Scholar
Mei, R. 1992 An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Intl J. Multiphase Flow 18 (1), 145147.CrossRefGoogle Scholar
Meiburg, E. & Kneller, B. 2010 Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135156.CrossRefGoogle Scholar
Meiburg, E., Radhakrishnan, S. & Nasr-Azadani, M. 2015 Modeling gravity and turbidity currents: computational approaches and challenges. Appl. Mech. Rev. 67 (4), 040802.CrossRefGoogle Scholar
Middleton, G.V. 1966 Experiments on density and turbidity currents: I. Motion of the head. Can. J. Earth Sci. 3 (4), 523546.CrossRefGoogle Scholar
Nasr-Azadani, M.M. & Meiburg, E. 2014 Turbidity currents interacting with three-dimensional seafloor topography. J. Fluid Mech. 745, 409443.CrossRefGoogle Scholar
Nasr-Azadani, M.M., Meiburg, E. & Kneller, B. 2018 Mixing dynamics of turbidity currents interacting with complex seafloor topography. Environ. Fluid Mech. 18 (1), 201223.CrossRefGoogle Scholar
Nourmohammadi, Z., Afshin, H. & Firoozabadi, B. 2011 Experimental observation of the flow structure of turbidity currents. J. Hydraul. Res. 49 (2), 168177.CrossRefGoogle Scholar
Ooi, S.K., Constantinescu, G. & Weber, L.J. 2007 2D large-eddy simulation of lock-exchange gravity current flows at high grashof numbers. ASCE J. Hydraul. Engng 133 (9), 10371047.CrossRefGoogle Scholar
Ouillon, R., Kakoutas, C., Meiburg, E. & Peacock, T. 2021 Gravity currents from moving sources. J. Fluid Mech. 924, A43.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2018 a The cessation threshold of nonsuspended sediment transport across aeolian and fluvial environments. J. Geophys. Res. 123 (8), 16381666.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2018 b Universal friction law at granular solid-gas transition explains scaling of sediment transport load with excess fluid shear stress. Phys. Rev. Fluids 3 (10), 104302.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2020 Unification of aeolian and fluvial sediment transport rate from granular physics. Phys. Rev. Lett. 124 (16), 168001.CrossRefGoogle ScholarPubMed
Pähtz, T., Liu, Y., Xia, Y., Hu, P., He, Z. & Tholen, K. 2021 Unified model of sediment transport threshold and rate across weak and intense subaqueous bedload, windblown sand, and windblown snow. J. Geophys. Res. 126 (4), e2020JF005859.Google Scholar
Pantin, H.M. 1979 Interaction between velocity and effective density in turbidity flow: phase-plane analysis, with criteria for autosuspension. Mar. Geol. 31 (1–2), 5999.CrossRefGoogle Scholar
Pantin, H.M. 2001 Experimental evidence for autosuspension. In Particulate Gravity Currents (ed. W. McCaffrey, B. Kneller & J. Peakall), pp. 189–205.Google Scholar
Pantin, H.M & Franklin, M.C. 2011 Improved experimental evidence for autosuspension. Sedim. Geol. 237 (1–2), 4654.CrossRefGoogle Scholar
Parker, G. 1982 Conditions for the ignition of catastrophically erosive turbidity currents. Mar. Geol. 46 (3–4), 307327.CrossRefGoogle Scholar
Parker, G., Fukushima, Y. & Pantin, H.M. 1986 Self-accelerating turbidity currents. J. Fluid Mech. 171, 145181.CrossRefGoogle Scholar
Parker, G., Garcia, M., Fukushima, Y. & Yu, W. 1987 Experiments on turbidity currents over an erodible bed. J. Hydraul. Res. 25 (1), 123147.CrossRefGoogle Scholar
Pelmard, J., Norris, S. & Friedrich, H. 2018 LES grid resolution requirements for the modelling of gravity currents. Comput. Fluids 174, 256270.CrossRefGoogle Scholar
Pelmard, J., Norris, S. & Friedrich, H. 2020 Statistical characterisation of turbulence for an unsteady gravity current. J. Fluid Mech. 901, A7.CrossRefGoogle Scholar
Schmeeckle, M.W. 2014 Numerical simulation of turbulence and sediment transport of medium sand. J. Geophys. Res. 119 (6), 12401262.CrossRefGoogle Scholar
Sequeiros, O.E., Mosquera, R. & Pedocchi, F. 2018 Internal structure of a self-accelerating turbidity current. J. Geophys. Res. 123 (9), 62606276.CrossRefGoogle Scholar
Sequeiros, O.E., Naruse, H., Endo, N., Garcia, M.H. & Parker, G. 2009 Experimental study on self-accelerating turbidity currents. J. Geophys. Res. 114 (C5), C05025.Google Scholar
Simpson, J.E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 14 (1), 213234.CrossRefGoogle Scholar
Southard, J.B. & Mackintosh, M.E. 1981 Experimental test of autosuspension. Earth Surf. Process. Landf. 6 (2), 103111.CrossRefGoogle Scholar
Steenhauer, K., Tokyay, T. & Constantinescu, G. 2017 Dynamics and structure of planar gravity currents propagating down an inclined surface. Phys. Fluids 29 (3), 036604.CrossRefGoogle Scholar
Strauss, M. & Glinsky, M.E. 2012 Turbidity current flow over an erodible obstacle and phases of sediment wave generation. J. Geophys. Res. 117 (C6), C06007.Google Scholar
Sun, D. & Liu, H. 2022 A probability model for predicting the slip velocity of large particles in vertical pipes. Powder Technol. 397, 117102.CrossRefGoogle Scholar
Sun, R. & Xiao, H. 2016 CFD–DEM simulations of current-induced dune formation and morphological evolution. Adv. Water Resour. 92, 228239.CrossRefGoogle Scholar
Turner, J.S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.CrossRefGoogle Scholar
Wang, S. & Shen, Y. 2022 Super-quadric CFD-DEM simulation of chip-like particles flow in a fluidized bed. Chem. Engng Sci. 251, 117431.CrossRefGoogle Scholar
Wells, M.G. & Dorrell, R.M. 2021 Turbulence processes within turbidity currents. Annu. Rev. Fluid Mech. 53, 5983.CrossRefGoogle Scholar
Wildt, D., Hauer, C., Habersack, H. & Tritthart, M. 2020 CFD modelling of particle-driven gravity currents in reservoirs. Water 12 (5), 1403.CrossRefGoogle Scholar
Wildt, D., Hauer, C., Habersack, H. & Tritthart, M. 2021 LES two-phase modelling of suspended sediment transport using a two-way coupled Euler–Lagrange approach. Adv. Water Resour. 160, 104095.CrossRefGoogle Scholar
Xie, J., Hu, P., Pähtz, T., He, Z. & Cheng, N. 2022 Fluid–particle interaction regimes during the evolution of turbidity currents from a coupled les/dem model. Adv. Water Resour. 163, 104171.CrossRefGoogle Scholar
Xu, J.P., Noble, M., Eittreim, S.L., Rosenfeld, L.K., Schwing, F.B. & Pilskaln, C.H. 2002 Distribution and transport of suspended particulate matter in Monterey Canyon, California. Mar. Geol. 181 (1–3), 215234.CrossRefGoogle Scholar
Xu, J.P., Noble, M.A. & Rosenfeld, L.K. 2004 In-situ measurements of velocity structure within turbidity currents. Geophys. Res. Lett. 31 (9), L09311.CrossRefGoogle Scholar
Yang, J., Low, Y.M., Lee, C.-H. & Chiew, Y.-M. 2018 Numerical simulation of scour around a submarine pipeline using computational fluid dynamics and discrete element method. Appl. Math. Model. 55, 400416.CrossRefGoogle Scholar
Zhu, R., He, Z., Zhao, K., Vowinckel, B. & Meiburg, E. 2022 Grain-resolving simulations of submerged cohesive granular collapse. J. Fluid Mech. 942, A49.CrossRefGoogle Scholar
Zhu, C., Yu, Z., Pan, D. & Shao, X. 2020 Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows. J. Fluid Mech. 891, A6.CrossRefGoogle Scholar