Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T19:22:03.988Z Has data issue: false hasContentIssue false

Turbulence induced by a swarm of rising bubbles from coarse-grained simulations

Published online by Cambridge University Press:  12 April 2024

Rémi Zamansky*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, INPT, UPS, CNRS, Toulouse, France
Florian Le Roy De Bonneville
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, INPT, UPS, CNRS, Toulouse, France
Frédéric Risso
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, INPT, UPS, CNRS, Toulouse, France
*
Email address for correspondence: remi.zamansky@imft.fr

Abstract

We performed numerical simulations of a homogeneous swarm of bubbles rising at large Reynolds number, $Re=760$, with volume fractions ranging from 1 % to 10 %. We consider a simplified model in which the interfaces are not resolved, but which allows us to simulate flows with a large number of bubbles and to emphasize the interactions between bubble wakes. The liquid phase is described by solving, on an Eulerian grid, the Navier–Stokes equations, including sources of momentum which model the effect of the bubbles. The dynamics of each bubble is determined within the Lagrangian framework by solving an equation of motion involving the hydrodynamic forces exerted by the fluid accounting for the correction of the fictitious self-interaction of a bubble with its own wake. The comparison with experiments shows that this coarse-grained simulations approach can reliably describe the dynamics of the resolved flow scales. We use conditional averaging to characterize the mean bubble wakes and obtain in particular the typical shear imposed by the rising bubbles. On the basis of the spectral decomposition of the energy budget, we observe that the flow is dominated by production at large scales and by dissipation at small scales and we rule out the presence of an intermediate range in which the production and dissipation are locally in balance. We propose that the $k^{-3}$ subrange of the energy spectra results from the mean shear rate imposed by the bubbles, which controls the rate of return to isotropy.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Institute of Meteorology and Climate Research, Institute for Hydromechanics, Karlsruhe Institute of Technology, Germany.

References

Akiki, G., Jackson, T.L. & Balachandar, S. 2017 Pairwise interaction extended point-particle model for a random array of monodisperse spheres. J. Fluid Mech. 813, 882928.CrossRefGoogle Scholar
Alméras, E., Mathai, V., Lohse, D. & Sun, C. 2017 Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech. 825, 10911112.CrossRefGoogle Scholar
Amoura, Z., Besnaci, C., Risso, F. & Roig, V. 2017 Velocity fluctuations generated by the flow through a random array of spheres: a model of bubble-induced agitation. J. Fluid Mech. 823, 592616.CrossRefGoogle Scholar
Bak, P., Tang, C. & Wiesenfeld, K. 1987 Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381384.CrossRefGoogle ScholarPubMed
Batchelor, G.K. 1969 Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12 (12), II–233.CrossRefGoogle Scholar
Bellet, F., Godeferd, F.S., Scott, J.F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.CrossRefGoogle Scholar
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295317.CrossRefGoogle Scholar
Champagne, F.H., Harris, V.G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.CrossRefGoogle Scholar
Climent, E. & Magnaudet, J. 1999 Large-scale simulations of bubble-induced convection in a liquid layer. Phys. Rev. Lett. 82, 48274830.CrossRefGoogle Scholar
Colombet, D., Legendre, D., Risso, F., Cockx, A. & Guiraud, P. 2015 Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction. J. Fluid Mech. 763, 254285.CrossRefGoogle Scholar
Du Cluzeau, A. 2019 Modélisation physique de la dynamique des écoulements à bulles par remontée d’échelle à partir de simulations fines. Theses, Université de Perpignan.Google Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44 (1), 97121.CrossRefGoogle Scholar
Garnier, C., Lance, M. & Marié, J.L. 2002 Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp. Therm. Fluid Sci. 26 (6), 811815.CrossRefGoogle Scholar
Hunt, J.C.R. & Eames, I. 2002 The disappearance of laminar and turbulent wakes in complex flows. J. Fluid Mech. 457, 111132.CrossRefGoogle Scholar
Innocenti, A., Jaccod, A., Popinet, S. & Chibbaro, S. 2021 Direct numerical simulation of bubble-induced turbulence. J. Fluid Mech. 918, A23.CrossRefGoogle Scholar
Kraichnan, R.H. & Nagarajan, S. 1967 Growth of turbulent magnetic fields. Phys. Fluids (1958-1988) 10 (4), 859870.CrossRefGoogle Scholar
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.CrossRefGoogle Scholar
Le Roy De Bonneville, F., Zamansky, R., Risso, F., Boulin, A. & Haquet, J.-F. 2021 Numerical simulations of the agitation generated by coarse-grained bubbles moving at large Reynolds number. J. Fluid Mech. 926, A20.CrossRefGoogle Scholar
Magnaudet, J. & Thais, L. 1995 Orbital rotational motion and turbulence below laboratory wind water waves. J. Geophys. Res.: Oceans 100 (C1), 757771.CrossRefGoogle Scholar
Mandelbrot, B.B. 1967 Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory IT13 (2), 289.CrossRefGoogle Scholar
Mandelbrot, B.B., Berger, J.M., Kahane, J.-P. & Peyriere, J. 1999 Multifractals and 1-f Noise. Springer.CrossRefGoogle Scholar
Marinari, E., Parisi, G., Ruelle, D. & Windey, P. 1983 On the interpretation of 1/f noise. Commun. Math. Phys. 89, 112.CrossRefGoogle Scholar
Martínez Mercado, J., Palacios-Morales, C.A. & Zenit, R. 2007 Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for $10 < Re < 500$. Phys. Fluids 19 (10), 103302.CrossRefGoogle Scholar
Maxworthy, T., Gnann, C., Kürten, M. & Durst, F. 1996 Experiments on the rise of air bubbles in clean viscous liquids. J. Fluid Mech. 321, 421441.CrossRefGoogle Scholar
Mendez-Diaz, S., Serrano-García, J.C., Zenit, R. & Hernández-Cordero, J.A. 2013 Power spectral distributions of pseudo-turbulent bubbly flows. Phys. Fluids 25 (4), 043303.CrossRefGoogle Scholar
Mougin, G. & Magnaudet, J. 2001 Path instability of a rising bubble. Phys. Rev. Lett. 88 (1), 014502.CrossRefGoogle ScholarPubMed
Mudde, R.F. 2005 Gravity-driven bubbly flows. Annu. Rev. Fluid Mech. 37 (1), 393423.CrossRefGoogle Scholar
Pandey, V., Ramadugu, R. & Perlekar, P. 2020 Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows. J. Fluid Mech. 884, R6.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Prakash, V.N., Martínez Mercado, J., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D. & Sun, C. 2016 Energy spectra in turbulent bubbly flows. J. Fluid Mech. 791, 174190.CrossRefGoogle Scholar
Ramirez, G., Burlot, A., Zamansky, R., Bois, G. & Risso, F. 2023 Spectral analysis of dispersed multiphase flows in the presence of fluid interfaces. Intl J. Multiphase Flow (submitted).Google Scholar
Rensen, J., Luther, S. & Lohse, D. 2005 The effect of bubbles on developed turbulence. J. Fluid Mech. 538, 153187.CrossRefGoogle Scholar
Riboux, G., Legendre, G. & Risso, F. 2013 A model of bubble-induced turbulence based on large-scale wake interactions. J. Fluid Mech. 719, 362387.CrossRefGoogle Scholar
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.CrossRefGoogle Scholar
Risso, F. 2016 Physical interpretation of probability density functions of bubble-induced agitation. J. Fluid Mech. 809, 240263.CrossRefGoogle Scholar
Risso, F. 2018 Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50 (1), 2548.CrossRefGoogle Scholar
Risso, F. & Ellingsen, K. 2002 Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395410.CrossRefGoogle Scholar
Risso, F., Roig, V., Amoura, Z., Riboux, G. & Billet, A.-M. 2008 Wake attenuation in large Reynolds number dispersed two-phase flows. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 366 (1873), 21772190.CrossRefGoogle ScholarPubMed
Roghair, I., Martinez Mercado, J., Van Sint Annaland, M, Kuipers, H., Sun, C. & Lohse, D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments. Intl J. Multiphase Flow 37 (9), 10931098.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Subramaniam, S., Mehrabadi, M., Horwitz, J. & Mani, A. 2014 Developing improved lagrangian point particle models of gas-solid flow from particle-resolved direct numerical simulation. In Proceedings of the summer program 2014. Center for Turbulence Research - Stanford University.Google Scholar
Tennekes, H. 1975 Eulerian and lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3), 561567.CrossRefGoogle Scholar
Thais, L. & Magnaudet, J. 1995 A triple decomposition of the fluctuating motion below laboratory wind water waves. J. Geophys. Res.: Oceans 100 (C1), 741755.CrossRefGoogle Scholar
van Wijngaarden, L. 2005 Bubble velocities induced by trailing vortices behind neighbours. J. Fluid Mech. 541, 203229.CrossRefGoogle Scholar
Xu, Y. & Subramaniam, S. 2007 Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows. Phys. Fluids 19 (8), 085101.CrossRefGoogle Scholar
Zamansky, R. 2022 Acceleration scaling and stochastic dynamics of a fluid particle in turbulence. Phys. Rev. Fluids 7, 084608.CrossRefGoogle Scholar
Zenit, R., Koch, D.L. & Sangani, A.S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.CrossRefGoogle Scholar
Zenit, R. & Magnaudet, J. 2008 Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys. Fluids 20, 061702.CrossRefGoogle Scholar
Supplementary material: File

Zamansky et al. supplementary movie 1

visualisation of the vertical component of the liquid velocity field in a vertical plane. The blue points represent the position of the bubbles. For for α = 1%
Download Zamansky et al. supplementary movie 1(File)
File 1.7 MB
Supplementary material: File

Zamansky et al. supplementary movie 2

visualisation of the vertical component of the liquid velocity field in a vertical plane. The blue points represent the position of the bubbles. For for α = 2%
Download Zamansky et al. supplementary movie 2(File)
File 1.8 MB
Supplementary material: File

Zamansky et al. supplementary movie 3

visualisation of the vertical component of the liquid velocity field in a vertical plane. The blue points represent the position of the bubbles. For for α = 5%
Download Zamansky et al. supplementary movie 3(File)
File 6.1 MB
Supplementary material: File

Zamansky et al. supplementary movie 4

visualisation of the vertical component of the liquid velocity field in a vertical plane. The blue points represent the position of the bubbles. For for α = 7.5%
Download Zamansky et al. supplementary movie 4(File)
File 5.7 MB
Supplementary material: File

Zamansky et al. supplementary movie 5

visualisation of the vertical component of the liquid velocity field in a vertical plane. The blue points represent the position of the bubbles. For for α = 10%
Download Zamansky et al. supplementary movie 5(File)
File 18.8 MB