Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T08:01:32.883Z Has data issue: false hasContentIssue false

Turbulent boundary layer on a rotating helical blade

Published online by Cambridge University Press:  29 March 2006

B. Lakshminarayana
Affiliation:
Department of Aerospace Engineering, The Pennsylvania State University
A. Jabbari
Affiliation:
Department of Aerospace Engineering, The Pennsylvania State University
H. Yamaoka
Affiliation:
Department of Aerospace Engineering, The Pennsylvania State University

Abstract

This paper investigates the boundary-layer characteristics on a helical blade of large chord length, enclosed in an annulus and rotating in a fluid otherwise at rest. The three-dimensional form of momentum integral equations is derived, and used to predict the boundary-layer growth and limiting streamline angles on the blade surface. The measurements are in general agreement with the predictions. The wall shear stress correlation, which includes both Reynolds number and rotation parameters, valid for a rotating blade operating at zero pressure gradient, is derived. Radial and tangential velocity profiles, the tangential component of turbulence intensity and blade static pressures are measured at several locations on the blade surface. The nature of flow near the blade tip is discussed. An expression for the radial velocity profile, valid in the outer region of the boundary layer, is derived theoretically.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banks, W. H. & Gadd G. E.1962 Nat. Phys. Lab. Rep. SHR27/62.
Bradshaw P.1971 J. Fluid Mech. 46, 417.
Bradshaw P., Ferris, D. J. & Atwell N. P.1967 J. Fluid Mech. 28, 593.
Cham, T. S. & Head M. R.1969 J. Fluid Mech. 37, 129.
Face A.1933 Proc. Roy. Soc. A 142, 560.
Fogarty L. E.1951 J. Aero Sci. 18, 247.
Halleen, R. M. & Johnston J. P.1967 Rep. MD18, Stanford University.
Horlock, J. H. & Wordsworth J.1965 J. Mech. 23, 305.
Jabbari A.1969 M.S. Thesis, The Pennsylvania State University.
Johnston J. P.1960 Tram. A.S.M.E., D 82, 233.
Johnston, B. P. 1970 Proc. Int. Symp. Fluid Mech. and Design Turbomachines, The Pennsylvania State University. N.A.S.A. S.P. (To be published.)
Kármán T. VON1946 N.A.C.A. Tech. Mem. 1092.
Klebanoff P. S.1955 N.A.C.A. Rep. 1247.
Lakshminarayana B.1970 Proc. Int. Syrup. Fluid Mech. and Design Turbomachines, The Pennsylvania State University N.A.S.A. S.P. (To be published).
Mager A.1951 N.A.C.A. Tech. Note, 2310.
Mccafferty H. G.1967 M.S. Thesis, The Pennsylvania State University.
Mccroskey W. J. Nash, J. F. & Hicks, J. G. 1971 A.I.A.A.J., 8, 188.
Moore J.1969 Gas Turbine Lab. Rep. 99, Massachusetts Institute of Technology.
Nash J. F.1969 J. Fluid Mech. 37, 625.
Patel V. C.1965 J. Fluid Mech. 23, 185.
Pierce, F. J. & Krommenhoe K. 1968 Interim Tech. Rep. 2, Virginia Polytechnic Institute. (Also DDC, AD680973.
Prahlad T.1968 A.I.A.A. J. 6, 1772.
Prandtl L.1946 British M.A.P. R. & T. 64.
Preston J. H.1954 J. Roy. Aero. Soc. 58, 109.
Richard, E. J. & Burstall F. H.1945 Aero. Res. Counc. R. & M. 2126.
Schlichting H.1960 Boundary Layer Theory. McGraw Hill.
Wyngaard, J. C. & Lumley J. L.1967 J. Sci. Instrum. 44, 363.