Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T03:39:36.266Z Has data issue: false hasContentIssue false

Turbulent drag reduction of boundary layer flow with non-ionic surfactant injection

Published online by Cambridge University Press:  15 May 2014

Shinji Tamano*
Affiliation:
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
Takuya Kitao
Affiliation:
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
Yohei Morinishi
Affiliation:
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
*
Email address for correspondence: tamano.shinji@nitech.ac.jp

Abstract

We experimentally investigated streamwise variations of turbulent dynamics in drag-reducing turbulent boundary layer flows following the injection of non-ionic surfactant solutions, which mainly consisted of oleyldimethylamine oxide. We focus on the comparison of turbulence statistics between injected (i.e. heterogeneous) and premixed (i.e. homogeneous) surfactant solutions, in which the maximum drag reduction ratio of 50 % is the same at the most downstream position for both cases. The wall-normal profiles of turbulence statistics, such as streamwise and wall-normal turbulence intensities, seem to be noticeably different between heterogeneous and homogeneous surfactant solutions. However, streamwise variations in these maxima and the wall-normal locations are essentially similar to one another, except for the maximum of streamwise turbulence intensity, which is not arranged by the amount of drag reduction and is also dependent on the normalization due to outer and inner variables. Such complex behaviour of streamwise turbulence intensity would be caused by the formation of near-wall layered structures that are parallel to the wall. For both heterogeneous and homogeneous surfactant solutions, the streamwise variation in the drag reduction ratio corresponds well to those of the mean velocity in wall units and the wall-normal locations of maxima of streamwise and wall-normal turbulence intensities with both outer and inner scaling. Unlike the Reynolds shear stress, the correlation coefficient of the streamwise and wall-normal turbulent fluctuations is correlated well with the drag reduction ratio. We present plausible pictures of the development of turbulence structures such as hairpin vortices and low-speed streaks for the drag-reducing turbulent boundary layer in heterogeneous and homogeneous surfactant solutions, which are comprehensively derived from the present set of experimental measurements such as flow visualization, planar laser-induced fluorescence, two-component laser-Doppler velocimetry and particle image velocimetry on the streamwise and wall-normal plane and the streamwise and spanwise plane.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Aguilar, G., Gasljevic, K. & Matthys, E. F. 2001 Asymptotes of maximum friction and heat transfer reductions for drag-reducing surfactant solutions. Intl J. Heat Mass Transfer 44, 28352843.Google Scholar
Bonn, D., Amarouchene, Y., Wagner, C., Douady, S. & Cadot, O. 2005 Turbulent drag reduction by polymers. J. Phys.: Condens. Matter 17, S1195S1202.Google Scholar
Broniarz-Press, L., Rozanski, J. & Rozanska, S. 2007 Drag reduction effect in pipe systems and liquid falling film flow. Rev. Chem. Engng 23, 149245.Google Scholar
Cadot, O., Bonn, D. & Douady, S. 1998 Turbulent drag reduction in a closed flow system: boundary layer versus bulk effects. Phys. Fluids 10, 426436.Google Scholar
Cai, S. P., Suzuki, H. & Komoda, Y. 2012 Drag-reduction of a nonionic surfactant aqueous solution and its rheological characteristics. Sci. China Technol. Sci. 55, 772778.CrossRefGoogle Scholar
Coles, D. E.1962 A manual of experimental boundary-layer practice for low-speed flow. Rand Rep. No. R-403-PR. The Rand Corp., Santa Monica, CA.Google Scholar
Dimitropoulos, C. D., Dubief, Y., Shaqfeh, E. S. G. & Moin, P. 2006 Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow of inhomogeneous polymer solutions. J. Fluid Mech. 566, 153162.Google Scholar
Dimitropoulos, C. D., Dubief, Y., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow. Phys. Fluids 17, 011705.Google Scholar
Dimitropoulos, C. D., Sureshkumar, R. & Beris, A. N. 1998 Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters. J. Non-Newtonian Fluid Mech. 79, 433468.CrossRefGoogle Scholar
Drappier, J., Divoux, T., Amarouchene, Y., Bertrand, F., Rodts, S., Cadot, O., Meunier, J. & Bonn, D. 2006 Turbulent drag reduction by surfactants. Europhys. Lett. 74, 362368.Google Scholar
Dubief, Y., Terrapon, V. E. & Soria, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids 25, 110817.Google Scholar
Elbing, B. R., Perlin, M., Dowling, D. R. & Ceccio, S. L. 2013 Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions. Phys. Fluids 25, 085103.CrossRefGoogle Scholar
Elbing, B. R., Solomon, M. J., Perlin, M., Dowling, D. R. & Ceccio, S. L. 2011 Flow-induced degradation of drag-reducing polymer solutions within a high Reynolds number turbulent boundary layer. J. Fluid Mech. 670, 337364.Google Scholar
Escudier, M. P., Presti, F. & Smith, S. 1999 Drag reduction in the turbulent pipe flow of polymers. J. Non-Newtonian Fluid Mech. 81, 197213.Google Scholar
Fontaine, A. A., Petrie, H. L. & Brungart, T. A. 1992 Velocity profile statistics in turbulent boundary layer with slot-injected polymer. J. Fluid Mech. 238, 435466.CrossRefGoogle Scholar
Frings, B. 1988 Heterogeneous drag reduction in turbulent pipe flows using various injection techniques. Rheol. Acta 27, 92110.CrossRefGoogle Scholar
Gasljevic, K., Aguilar, G. & Matthys, E. F. 2001 On two distinct types of drag-reducing fluids, diameter scaling, and turbulent profiles. J. Non-Newtonian Fluid Mech. 96, 405425.CrossRefGoogle Scholar
Gasljevic, K., Hoyer, K. & Matthys, E. F. 2007 Temporary degradation and recovery of drag-reducing surfactant solutions. J. Rheol. 51, 645667.Google Scholar
Gyr, A. & Bewersdorff, H.-W. 1995 Drag Reduction of Turbulent Flows by Additives. Kluwer Academic.CrossRefGoogle Scholar
Hou, Y., Somandepalli, V. S. R. & Mungal, M. G. 2006 A technique to determine total shear stress and polymer stress profiles in drag reduced boundary layer flows. Exp. Fluids 40, 589600.Google Scholar
Hou, Y., Somandepalli, V. S. R. & Mungal, M. G. 2008 Streamwise development of turbulent boundary-layer drag reduction with polymer injection. J. Fluid Mech. 597, 3166.Google Scholar
Housiadas, K. D. & Beris, A. N. 2004 An efficient fully implicit spectral scheme for DNS of turbulent viscoelastic channel flow. J. Non-Newtonian Fluid Mech. 122, 243262.Google Scholar
Hoyt, J. W. & Sellin, R. H. J. 1991 Polymer threads and drag reduction. Rheol. Acta 30, 307315.Google Scholar
Hu, Y. & Matthys, E. F. 1997 Rheological and rheo-optical characterization of shear-induced structure formation in a nonionic drag-reducing surfactant solution. J. Rheol. 41, 151166.CrossRefGoogle Scholar
Itoh, M., Tamano, S., Yokota, K. & Ninagawa, M. 2005 Velocity measurement in turbulent boundary layer of drag-reducing surfactant solution. Phys. Fluids 17, 075107.Google Scholar
Kim, K., Adrian, R. J., Balachandar, S. & Sureshkumar, R. 2008 Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 100, 134504.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Koskie, J. E. & Tiederman, W. G. 1991 Polymer drag reduction of a zero-pressure-gradient boundary layer. Phys. Fluids A 3, 24712473.Google Scholar
Kulmatova, D., Bonn, D. & Kellay, H. 2013 High-Reynolds-number turbulence in complex fluids. Europhys. Lett. 101, 24002.Google Scholar
Li, C.-F., Sureshkumar, R. & Khomami, B. 2006a Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newtonian Fluid Mech. 140, 2340.Google Scholar
Li, F.-C., Kawaguchi, Y., Hishida, K. & Oshima, M. 2006b Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive by stereoscopic particle image velocimetry. Exp. Fluids 40, 218230.Google Scholar
Li, F.-C., Yu, B., Wei, J.-J. & Kawaguchi, Y. 2012 Turbulent Drag Reduction by Surfactant Additives. John Wiley & Sons.Google Scholar
Lin, Z., Zheng, Y., Davis, H. T., Scriven, L. E., Talmon, Y. & Zakin, J. L. 2000 Unusual effects of counterion to surfactant concentration ratio on viscoelasticity of a cationic surfactant drag reducer. J. Non-Newtonian Fluid Mech. 93, 363373.CrossRefGoogle Scholar
Lu, B., Li, X., Scriven, L. E., Davis, H. T., Talmon, Y. & Zakin, J. L. 1998a Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions. Langmuir 14, 816.Google Scholar
Lu, B., Zheng, Y., Davis, H. T., Scriven, L. E., Talmon, Y. & Zakin, J. L. 1998b Effect of variations in counterion to surfactant ratio on rheology and microstructures of drag reducing cationic surfactant systems. Rheol. Acta 37, 528548.Google Scholar
Oldaker, D. J. & Tiederman, W. G. 1977 Spatial structure of the viscous sublayer in drag-reducing channel flows. Phys. Fluids 20, S133S144.Google Scholar
Qi, Y. & Zakin, J. L. 2002 Chemical and rheological characterization of drag-reducing cationic surfactant systems. Ind. Engng Chem. Res. 41, 63266336.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A. N., Wagner, C. & Hof, B. 2013 Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 110, 10 55710 562.Google Scholar
Somandepalli, V. S. R., Hou, Y. X. & Mungal, M. G. 2010 Concentration flux measurements in a polymer drag-reduced turbulent boundary layer. J. Fluid Mech. 644, 281319.Google Scholar
Sun Chee Fore, R., Szwalek, J. & Sirviente, A. I. 2005 The effects of polymer solution preparation and injection on drag reduction. J. Fluids Engng 127, 536549.Google Scholar
Tamano, S., Graham, M. D. & Morinishi, Y. 2011 Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. J. Fluid Mech. 686, 352377.Google Scholar
Tamano, S. & Itoh, M. 2011 Comparison of turbulence structures at large and small drag reduction ratios in turbulent boundary layer of surfactant solutions. J. Turbul. 12 (18), 122.Google Scholar
Tamano, S., Itoh, M., Hoshizaki, K. & Yokota, K. 2007 Direct numerical simulation on the drag-reducing turbulent boundary layer of viscoelastic fluid. Phys. Fluids 19, 075106.CrossRefGoogle Scholar
Tamano, S., Itoh, M., Hotta, S., Yokota, K. & Morinishi, Y. 2009a Effect of rheological properties on drag reduction in turbulent boundary layer flow. Phys. Fluids 21, 055101.Google Scholar
Tamano, S., Itoh, M., Inoue, T., Kato, K. & Yokota, K. 2009b Turbulence statistics and structures of drag-reducing turbulent boundary layer in homogeneous aqueous surfactant solutions. Phys. Fluids 21, 045101.Google Scholar
Tamano, S., Itoh, M., Kato, K. & Yokota, K. 2010 Turbulent drag reduction in nonionic surfactant solutions. Phys. Fluids 22, 055102.Google Scholar
Tamano, S., Miyagawa, K., Morinishi, Y., Itoh, M. & Taga, K. 2012 Effects of degradation on drag reduction in turbulent pipe flow of nonionic surfactant aqueous solutions. Nihon Reoroji Gakkaishi 40, 6977.Google Scholar
Tiederman, W. G., Luchik, T. S. & Bogard, D. G. 1985 Wall-layer structure and drag reduction. J. Fluid Mech. 156, 419437.CrossRefGoogle Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.Google Scholar
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625656.Google Scholar
Vleggaar, J. & Tels, M. 1973 Drag reduction by polymer threads. Chem. Engng Sci. 28, 965968.Google Scholar
Wagner, C., Amarouchene, Y., Doyle, P. & Bonn, D. 2006 Turbulent-drag reduction of polyelectrolyte solutions: relation with the elongational viscosity. Europhys. Lett. 64, 823829.Google Scholar
Wallace, J. M. 2013 Highlights from 50 years of turbulent boundary layer research. J. Turbul. 13 (53), 170.Google Scholar
Warholic, M. D., Heist, D. K., Katcher, M. & Hanratty, T. J. 2001 A study with particle-image velocimetry of the influence of drag-reducing polymers on the structure of turbulence. Exp. Fluids 31, 474483.Google Scholar
Warholic, M. D., Schmidt, G. M. & Hanratty, T. J. 1999 The influence of a drag-reducing surfactant on a turbulent velocity field. J. Fluid Mech. 388, 120.Google Scholar
White, C. M., Dubief, Y. & Klewicki, J. 2012 Re-examining the logarithmic dependence of the mean velocity distribution in polymer drag reduced wall-bounded flow. Phys. Fluids 24, 021701.Google Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
White, C. M., Somandepalli, V. S. R. & Mungal, M. G. 2004 The turbulence structure of drag-reduced boundary layer flow. Exp. Fluids 36, 6269.Google Scholar
Winkel, E. S., Oweis, G., Vanapalli, S. A., Dowling, D. R., Perlin, M., Solomon, M. J. & Ceccio, S. L. 2009 High Reynolds number turbulent boundary layer friction drag reduction from wall-injected polymer solutions. J. Fluid Mech. 621, 259288.Google Scholar
Wu, J. & Tulin, M. P. 1972 Drag reduction by ejecting additive solutions into a pure water boundary layer. Trans. ASME D: J. Basic Engng 94, 749755.Google Scholar
Zakin, J. L. & Ge, W. 2010 Polymer and surfactant drag reduction in turbulent flows. In Polymer Physics: From Suspensions to Nanocomposites and Beyond (ed. Utracki, L. A. & Jamieson, A. M.), pp. 89127. John Wiley & Sons.Google Scholar
Zakin, J. L., Lu, B. & Bewersdorff, H.-W. 1998 Surfactant drag reduction. Rev. Chem. Engng 14, 253318.Google Scholar