Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T12:26:29.374Z Has data issue: false hasContentIssue false

Turbulent pair dispersion and scalar diffusion

Published online by Cambridge University Press:  20 April 2006

T. S. Lundgren
Affiliation:
National Center for Atmospheric Research, Boulder, Colorado 80307 Permanent address: Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455.

Abstract

A method of treating turbulent pair dispersion and scalar diffusion is presented. Use is made of Kraichnan's form of Richardson's diffusion equation by relating the turbulent pair diffusivity to single-time Eulerian velocity statistics (which are presumed known) by means of a statistical independence hypothesis. In this procedure the diffusivity itself is coupled to solutions of the diffusivity equation in a self-consistent way.

The method is applied to both two-and three-dimensional flow. In three-dimensional inertial-range and dissipative-range turbulence the turbulent pair diffusivity is determined and used to find the values of the coefficients of the scalar spectrum in the $k^{-\frac{5}{3}}$ and k−1 ranges with good agreement with experiment. The Obukhov–Corrsin constant is found to be 0·49 and the Batchelor constant is √5. In two-dimensional turbulence the results are compared with constant-pressure balloon dispersion experiments. Results are also found for the rate of decay of scalar intensity in the special case where the initial scalar spectrum peaks in the inertial range.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1952 Proc. Roy. Soc. A 213, 349.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Batchelor, G. K., Howells, I. D. & Townsend, A. A. J. Fluid Mech. 5, 134.
Champagne, F. H., Friehe, C. A., La Rue, J. C. & Wyngaard, J. C. 1977 J. Atmos. Sci. 34, 515.
Clay, J. P. 1973 Turbulent mixing of temperature in water, air and mercury. Ph.D. dissertation, Engineering Physics, University of California, San Diego.
Corrsin, S. 1951 J. Appl. Phys. 22, 469.
Corrsin, S. 1959 Atmospheric Diffusion and Air Pollution, Advances in Geophysics, vol. 6 (ed. F. N. Frenkiel & P. A. Sheppard), p. 161. Academic.
Corrsin, S. 1962 Mécanique de la Turbulence, Coll. Int. du CNRS à Marseille, Paris, p. 27.
Gibson, C. H. & Schwarz, W. H. 1963 J. Fluid Mech. 16, 365.
Granatstein, V. L., Buchsbaum, S. J. & Bugnolo, D. S. 1966 Phys. Rev. Lett. 16, 504.
Grant, H. L., Hughes, B. A., Vogel, W. M. & Moilliet, A. 1968 J. Fluid Mech. 34, 423.
Julian, P., Lally, V., Kellog, W., Suomi, V. & Cote, C. 1977 Bull. Am. Met. Soc. 58, 936.
Kolmogorov, A. N. 1941 Dokl. Akad. Nauk S.S.S.R. 30, 299.
Kraichnan, R. H. 1965 Phys. Fluids 8, 575.
Kraichnan, R. H. 1966a Phys. Fluids 9, 1728.
Kraichnan, R. H. 1966b Phys. Fluids 9, 1937.
Kraichnan, R. H. 1968 Phys. Fluids 11, 945.
Kraichnan, R. H. 1971 J. Fluid Mech. 47, 525.
Kraichnan, R. H. 1974 J. Fluid Mech. 64, 737.
Lin, J.-T. 1972 J. Atmos. Sci. 29, 394.
Lundgren, T. S. & Pointin, V. B. 1976 Phys. Fluids 19, 355.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. II, 24.3. Massachusetts Institute of Technology Press.
Montgomery, D. 1975 Plasma Physics: Les Houches 1972 (ed. C. de Witt & J. Peyraud). Gordon & Breach.
Mobel, P. & Bandeen, W. 1973 Bull. Am. Met. Soc. 54, 298.
Morel, P. & Larcheveque, M. 1974 J. Atmos. Sci. 31, 2189.
Obukhov, A. M. 1949 Izv. Akad. Nauk S.S.S.R. Geogr. Geofiz. 13, 58.
Orszag, S. A. 1974 Fluid Dynamics: Les Houches 1973 (ed. R. Balian & J. L. Peube). Gordon & Breach.
Paquin, J. E. & Pond, S. 1971 J. Fluid Mech. 50, 257.
Peskin, R. L. 1974 Int. Symp. on Turbulent Diffusion in Environmental Pollution, Advances in Geophysics, vol. 18a (ed. F. N. Frenkiel & R. E. Munn), p. 141. Academic.
Richardson, L. F. 1926 Proc. Roy. Soc. A 110, 709.
Roberts, P. H. 1961 J. Fluid Mech. 11, 257.
Rose, H. A. & Sulem, P. L. 1978 J. Phys. 39, 441.
Saffman, P. G. 1962 Appl. Sci. Res. A 11, 245.
Saffman, P. G. 1971 Stud. Appl. Math. 50, 377.
Salu, Y. & Montgomery, D. 1977 Phys. Fluids 20, 1.
Taylor, G. I. 1921 Proc. Lond. Math. Soc. 20, 196.
Taylor, J. B. & McNamara, B. 1971 Phys. Fluids 14, 1492.
Warhaft, Z. & Lumley, J. L. 1978 J. Fluid Mech. 88, 659.
Williams, R. M. 1974 Ph.D. thesis, Oregon State University.