Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T06:32:14.368Z Has data issue: false hasContentIssue false

Turbulent Rayleigh–Bénard convection in a strong vertical magnetic field

Published online by Cambridge University Press:  20 May 2020

R. Akhmedagaev
Affiliation:
University of Michigan–Dearborn, 4901 Evergreen Road, Dearborn, MI 48128-1491, USA
O. Zikanov*
Affiliation:
University of Michigan–Dearborn, 4901 Evergreen Road, Dearborn, MI 48128-1491, USA
D. Krasnov
Affiliation:
Technische Universität Ilmenau, Postfach 100565, 98694Ilmenau, Germany
J. Schumacher
Affiliation:
Technische Universität Ilmenau, Postfach 100565, 98694Ilmenau, Germany
*
Email address for correspondence: zikanov@umich.edu

Abstract

Direct numerical simulations are carried out to study the flow structure and transport properties in turbulent Rayleigh–Bénard convection in a vertical cylindrical cell of aspect ratio one with an imposed axial magnetic field. Flows at the Prandtl number $0.025$ and Rayleigh and Hartmann numbers up to $10^{9}$ and $1400$, respectively, are considered. The results are consistent with those of earlier experimental and numerical data. As anticipated, the heat transfer rate and kinetic energy are suppressed by a strong magnetic field. At the same time, their growth with Rayleigh number is found to be faster in flows at high Hartmann numbers. This behaviour is attributed to the newly discovered flow regime characterized by prominent quasi-two-dimensional structures reminiscent of vortex sheets observed earlier in simulations of magnetohydrodynamic turbulence. Rotating wall modes similar to those in Rayleigh–Bénard convection with rotation are found in flows near the Chandrasekhar linear stability limit. A detailed analysis of the spatial structure of the flows and its effect on global transport properties is reported.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmedagaev, R., Zikanov, O., Krasnov, D. & Schumacher, J.2020 Rayleigh–Bénard convection in strong vertical magnetic field: flow structure and verification of numerical method. Magnetohydrodynamics (in press), arXiv:2002.09404.Google Scholar
Aurnou, J. M. & Olson, P. L. 2001 Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech. 430, 283307.CrossRefGoogle Scholar
Burr, U. & Müller, U. 2001 Rayleigh–Bénard convection in liquid metal layers under the influence of a vertical magnetic field. Phys. Fluids 13 (11), 32473257.CrossRefGoogle Scholar
Busse, F. H. 2008 Asymptotic theory of wall-attached convection in a horizontal fluid layer with a vertical magnetic field. Phys. Fluids 20 (2), 024102.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Cioni, S., Chaumat, S. & Sommeria, J. 2000 Effect of a vertical magnetic field on turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 62 (4), R4520R4523.Google ScholarPubMed
Davidson, P. A. 2016 Introduction to Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Ecke, R., Zhong, F. & Knobloch, E. 1992 Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19 (3), 177182.CrossRefGoogle Scholar
Gelfgat, A. Y. & Zikanov, O. 2018 Computational modeling of magnetoconvection: effects of discretization method, grid refinement and grid stretching. Comput. Fluids 175, 6682.CrossRefGoogle Scholar
Glazier, J. A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398, 307310.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 3316.CrossRefGoogle ScholarPubMed
Houchens, B. C., Witkowski, L. M. & Walker, J. S. 2002 Rayleigh–Bénard instability in a vertical cylinder with a vertical magnetic field. J. Fluid Mech. 469, 189207.CrossRefGoogle Scholar
King, E. M. & Aurnou, J. M. 2015 Magnetostrophic balance as the optimal state for turbulent magnetoconvection. Proc. Natl Acad. Sci. USA 112 (4), 990994.CrossRefGoogle ScholarPubMed
Krasnov, D., Zikanov, O. & Boeck, T. 2011 Comparative study of finite difference approaches to simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. Comput. Fluids 50, 4659.CrossRefGoogle Scholar
Krasnov, D., Zikanov, O. & Boeck, T. 2012 Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. J. Fluid Mech. 704, 421446.CrossRefGoogle Scholar
Lim, Z. L., Chong, K. L., Ding, G. & Xia, K. 2019 Quasistatic magnetoconvection: heat transport enhancement and boundary layer crossing. J. Fluid Mech. 870, 519542.CrossRefGoogle Scholar
Liu, W., Krasnov, D. & Schumacher, J. 2018 Wall modes in magnetoconvection at high Hartmann numbers. J. Fluid Mech. 849, R2.CrossRefGoogle Scholar
Nakagawa, Y. 1957 Experiments on the inhibition of thermal convection by a magnetic field. Proc. R. Soc. Lond. 240 (1220), 108113.Google Scholar
Ni, M.-J., Munipalli, R., Huang, P., Morley, N. B. & Abdou, M. A. 2007 A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system. J. Comput. Phys. 227, 174204.CrossRefGoogle Scholar
Ozoe, H. 2005 Magnetic Convection. Imperial College Press.CrossRefGoogle Scholar
Scheel, J. D. & Schumacher, J. 2017 Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows. Phys. Rev. Fluids 2 (12), 123501.CrossRefGoogle Scholar
Takeshita, T., Segawa, T., Glazier, J. A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76 (9), 14651468.CrossRefGoogle ScholarPubMed
Weiss, N. O. & Proctor, M. R. E. 2014 Magnetoconvection. Cambridge University Press.CrossRefGoogle Scholar
Yan, M., Calkins, M. A., Maffei, S., Julien, K., Tobias, S. M. & Marti, P. 2019 Heat transfer and flow regimes in quasi-static magnetoconvection with a vertical magnetic field. J. Fluid Mech. 877, 11861206.CrossRefGoogle Scholar
Zhang, X., van Gils, D. P. M., Horn, S., Wedi, M., Zwirner, L., Ahlers, G., Ecke, R. E., Weiss, S., Bodenschatz, E. & Shishkina, O.2019 Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. (in press), arXiv:1911.09584.Google Scholar
Zhao, Y. & Zikanov, O. 2012 Instabilities and turbulence in magnetohydrodynamic flow in a toroidal duct prior to transition in Hartmann layers. J. Fluid Mech. 692, 288316.CrossRefGoogle Scholar
Zhong, F., Ecke, R. & Steinberg, V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 67 (18), 2473.CrossRefGoogle ScholarPubMed
Zikanov, O., Listratov, Y. & Sviridov, V. G. 2013 Natural convection in horizontal pipe flow with strong transverse magnetic field. J. Fluid Mech. 720, 486516.CrossRefGoogle Scholar
Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.CrossRefGoogle Scholar
Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. 2019 Combined measurement of velocity and temperature in liquid metal convection. J. Fluid Mech. 876, 11081128.CrossRefGoogle Scholar
Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J.2020 Flow regimes of Rayleigh–Bénard convection in a vertical magnetic field. J. Fluid Mech. (in press), arXiv:2002.07414.Google Scholar
Supplementary material: File

Akhmedagaev et al. supplementary material

Akhmedagaev et al. supplementary material

Download Akhmedagaev et al. supplementary material(File)
File 148.6 KB