Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T00:16:17.322Z Has data issue: false hasContentIssue false

Two-dimensional plastic flow of foams and emulsions in a channel: experiments and lattice Boltzmann simulations

Published online by Cambridge University Press:  09 February 2015

B. Dollet*
Affiliation:
Institut de Physique de Rennes, UMR 6251 CNRS/Université Rennes 1, Campus Beaulieu, Bâtiment 11A, 35042 Rennes CEDEX, France
A. Scagliarini
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
M. Sbragaglia
Affiliation:
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
*
Email address for correspondence: benjamin.dollet@univ-rennes1.fr

Abstract

In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified by looking at the relationship between the localisation length of the velocity profiles and the localisation length of the spatial distribution of plastic events. To complement the cooperativity mechanisms studied in foam with those of other soft glassy systems, we compare the experiments with simulations of dense emulsions based on the lattice Boltzmann method, which are performed both with and without wall friction. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correlation with the underlying local shear strain. These features, not previously reported for a confined foam, lend further support to the idea that cooperativity mechanisms, originally invoked for concentrated emulsions (Goyon et al., Nature, vol. 454, 2008, pp. 84–87), have parallels in the behaviour of other soft glassy materials.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afkhami, S., Leshansky, A. M. & Renardy, Y. 2011 Numerical investigation of elongated drops in a microfluidic T-junction. Phys. Fluids 23, 022002.Google Scholar
Aidun, C. K. & Clausen, J. R. 2010 Lattice Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.CrossRefGoogle Scholar
Amon, A., Nguyen, V. B., Bruand, A., Crassous, J. & Clément, E. 2012 Hot spots in an athermal system. Phys. Rev. Lett. 108, 135502.Google Scholar
Barry, J. D., Weaire, D. & Hutzler, S. 2011 Nonlocal effects in the continuum theory of shear localisation in 2D foams. Phil. Mag. Lett. 91, 432440.CrossRefGoogle Scholar
Bastea, S., Esposito, R., Lebowitz, J.-L. & Marra, R. 2002 Hydrodynamics of binary fluid phase segregation. Phys. Rev. Lett. 89, 235701.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
Benzi, R., Bernaschi, M., Sbragaglia, M. & Succi, S. 2010 Herschel–Bulkley rheology from lattice kinetic theory of soft glassy materials. EPL 91, 14003.Google Scholar
Benzi, R., Bernaschi, M., Sbragaglia, M. & Succi, S. 2013 Rheological properties of soft-glassy flows from hydro-kinetic simulations. EPL 104, 48006.Google Scholar
Benzi, R., Sbragaglia, M., Succi, S., Bernaschi, M. & Chibbaro, S. 2009 Mesoscopic lattice Boltzmann modeling of soft-glassy systems: theory and simulations. J. Chem. Phys. 131, 104903.Google Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145197.CrossRefGoogle Scholar
Bergeron, V. 1999 Forces and structure in thin liquid soap films. J. Phys.: Condens. Matter 11, R215R238.Google Scholar
Bernaschi, M., Rossi, L., Benzi, R., Sbragaglia, M. & Succi, S. 2009 Graphics processing unit implementation of lattice Boltzmann models for flowing soft systems. Phys. Rev. E 80, 066707.Google Scholar
Bocquet, L., Colin, A. & Ajdari, A. 2009 Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103, 036001.CrossRefGoogle ScholarPubMed
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.Google Scholar
Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F. & Saint-Jalmes, A. 2013 Foams, Structure and Dynamics. Oxford University Press.Google Scholar
Cheddadi, I., Saramito, P., Dollet, B., Raufaste, C. & Graner, F. 2011 Understanding and predicting viscous, elastic, plastic flows. Eur. Phys. J. E 34, 1.CrossRefGoogle ScholarPubMed
Cheddadi, I., Saramito, P. & Graner, F. 2012 Steady Couette flows of elasto-viscoplastic fluids are non-unique. J. Rheol. 56, 213239.CrossRefGoogle Scholar
Chen, D., Desmond, K. W. & Weeks, E. R. 2012 Topological rearrangements and stress fluctuations in quasi-two-dimensional Hopper flow of emulsions. Soft Matt. 8, 1048610492.Google Scholar
Chen, S. & Doolen, G. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.Google Scholar
Cox, S. J. & Janiaud, E. 2008 On the structure of quasi-two-dimensional foams. Phil. Mag. Lett. 88, 693701.Google Scholar
Debrégeas, G., Tabuteau, H. & di Meglio, J. M. 2001 Deformation and flow of a two-dimensional foam under continuous shear. Phys. Rev. Lett. 87, 178305.CrossRefGoogle ScholarPubMed
Denkov, N. D., Tcholakova, S., Golemanov, K., Subramanian, V. & Lips, A. 2006 Foam–wall friction: effect of air volume fraction for tangentially immobile bubble surface. Colloids Surf. A 282–283, 329347.Google Scholar
Denkov, N. D., Tcholakova, S., Golemanov, K., Ananthapadmanabhan, K. P. & Lips, A. 2008 Viscous friction in foams and concentrated emulsions under steady shear. Phys. Rev. Lett. 100, 138301.Google Scholar
Denkov, N. D., Tcholakova, S., Golemanov, K., Ananthapadmanabhan, K. P. & Lips, A. 2009 The role of surfactant type and bubble surface mobility in foam rheology. Soft Matt. 5, 33893408.Google Scholar
Derjaguin, B. V. 1989 Theory of Stability of Colloids and Thin Films. Consultants Bureau.Google Scholar
Dollet, B. 2010 Local description of the two-dimensional flow of foam through a contraction. J. Rheol. 54, 741760.CrossRefGoogle Scholar
Dollet, B. & Cantat, I. 2010 Deformation of soap films pushed through tubes at high velocity. J. Fluid Mech. 652, 529539.Google Scholar
Dollet, B., Elias, F., Quilliet, C., Raufaste, C., Aubouy, F. & Graner, F. 2005 Two-dimensional flow of foam around an obstacle: force measurements. Phys. Rev. E 71, 031403.Google Scholar
Dollet, B. & Graner, F. 2007 Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow. J. Fluid Mech. 585, 181211.Google Scholar
Durian, D. J. 1997 Bubble-scale model of foam mechanics: melting, nonlinear behavior, and avalanches. Phys. Rev. E 55, 17391751.Google Scholar
Geraud, B., Bocquet, L. & Barentin, C. 2013 Confined flows of a polymer microgel. Eur. Phys. J. E 36, 30.CrossRefGoogle ScholarPubMed
Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M. & Lips, A. 2008 Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir 24, 99569961.CrossRefGoogle ScholarPubMed
Goyon, J., Colin, A. & Bocquet, L. 2010 How does a soft glassy material flow: finite size effects, nonlocal rheology, and flow cooperativity. Soft Matt. 6, 26682678.Google Scholar
Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L. 2008 Spatial cooperativity in soft glassy flows. Nature 454, 8487.Google Scholar
Gross, M., Moradi, N., Zikos, G. & Varnik, F. 2011 Shear stress in nonideal fluid lattice Boltzmann simulations. Phys. Rev. E 83, 017701.CrossRefGoogle ScholarPubMed
Hébraud, P. & Lequeux, F. 1998 Mode-coupling theory for the pasty rheology of soft glassy materials. Phys. Rev. Lett. 81, 29342937.Google Scholar
Hodges, S. R., Jensen, O. E. & Rallison, J. M. 2004 The motion of a viscous drop through a cylindrical tube. J. Fluid Mech. 501, 279301.Google Scholar
Janiaud, E., Weaire, D. & Hutzler, S. 2006 Two-dimensional foam rheology with viscous drag. Phys. Rev. Lett. 97, 038302.Google Scholar
Jop, P., Mansard, V., Chaudhuri, P., Bocquet, L. & Colin, A. 2012 Microscale rheology of a soft glassy material close to yielding. Phys. Rev. Lett. 108, 148301.CrossRefGoogle ScholarPubMed
Jorjadze, I., Pontani, L. L. & Brujić, J. 2013 Microscopic approach to the nonlinear elasticity of compressed emulsions. Phys. Rev. Lett. 110, 048302.Google Scholar
Kabla, A. & Debrégeas, G. 2003 Local stress relaxation and shear banding in a dry foam under shear. Phys. Rev. Lett. 90, 258303.Google Scholar
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301.Google Scholar
Katgert, G., Latka, A., Möbius, M. E. & Van Hecke, M. 2009 Flow in linearly sheared two-dimensional foams: from bubble to bulk scale. Phys. Rev. E 79, 066318.Google Scholar
Katgert, G., Möbius, M. E. & Van Hecke, M. 2008 Rate dependence and role of disorder in linearly sheared two-dimensional foams. Phys. Rev. Lett. 101, 058301.Google Scholar
Katgert, G., Tighe, B. P., Möbius, M. E. & van Hecke, M. 2010 Couette flow of two-dimensional foams. EPL 90, 54002.Google Scholar
Kern, N., Weaire, D., Martin, A., Hutzer, S. & Cox, S. J. 2004 Two-dimensional viscous froth model for foam dynamics. Phys. Rev. E 70, 041411.Google Scholar
Khan, S. A. & Armstrong, R. C. 1986 Rheology of foams. I. Theory for dry foams. J. Non-Newtonian Fluid Mech. 22, 122.Google Scholar
Komrakova, A. E., Shardt, O., Eskin, D. & Derksen, J. J. 2013 Lattice Boltzmann simulations of drop deformation and breakup. J. Comput. Phys. 59, 2443.Google Scholar
Lauridsen, J., Chanan, G. & Dennin, M. 2004 Velocity profiles in slowly sheared bubble rafts. Phys. Rev. Lett. 93, 018303.Google Scholar
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C. M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95126.CrossRefGoogle Scholar
Mansard, V., Bocquet, L. & Colin, A. 2014 Boundary conditions for soft glassy flows: slippage and surface fluidization. Soft Matt. 10, 69846989.Google Scholar
Mansard, V., Colin, A., Chaudhuri, P. & Bocquet, L. 2013 A molecular dynamics study of nonlocal effects in the flow of soft jammed particles. Soft Matt. 9, 74897500.Google Scholar
Marze, S., Langevin, D. & Saint-Jalmes, A. 2008 Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering. J. Rheol. 52, 10911111.CrossRefGoogle Scholar
Nicolas, A. & Barrat, J.-L. 2013 Spatial cooperativity in microchannel flows of soft jammed materials: a mesoscopic approach. Phys. Rev. Lett. 110, 138304.Google Scholar
Ovarlez, G., Rodts, S., Ragouilliaux, A., Coussot, P., Goyon, J. & Colin, A. 2008 Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys. Rev. E 78, 036307.Google Scholar
Picard, G., Ajdari, A., Lequeux, F. & Bocquet, L. 2004 Elastic consequences of a single plastic event: a step towards the microscopic modeling of the flow of yield stress fluids. Eur. Phys. J. E 15, 371381.Google Scholar
Polyanin, A. D. & Zaitsev, V. F. 2003 Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman & Hall/CRC.Google Scholar
Princen, H. M. 1983 Rheology of foams and highly concentrated emulsions. I. Elastic properties and yield stress of a cylindrical model system. J. Colloid Interface Sci. 91, 160175.Google Scholar
Princen, H. M. & Kiss, A. D. 1986 Rheology of foams and highly concentrated emulsions. III. Static shear modulus. J. Colloid Interface Sci. 112, 427437.Google Scholar
Princen, H. M. & Kiss, A. D. 1989 Rheology of foams and highly concentrated emulsions. IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions. J. Colloid Interface Sci. 128, 176187.Google Scholar
Reinelt, D. A. & Kraynik, A. M. 2000 Simple shearing flow of dry soap foams with tetrahedrally close-packed structure on the structure of quasi-two-dimensional foams. J. Rheol. 44, 453471.Google Scholar
Rycroft, C. H., Grest, G. S., Landry, J. W. & Bazant, M. Z. 2006 Analysis of granular flow in a pebble-bed nuclear reactor. Phys. Rev. E 74, 021306.Google Scholar
Sbragaglia, M. & Belardinelli, D. 2013 Interaction pressure tensor for a class of multicomponent lattice Boltzmann models. Phys. Rev. E 88, 013306.Google Scholar
Sbragaglia, M., Benzi, R., Bernaschi, M. & Succi, S. 2012 The emergence of supramolecular forces from lattice kinetic models of non-ideal fluids: applications to the rheology of soft glassy materials. Soft Matt. 8, 1077310782.Google Scholar
Scagliarini, A., Dollet, B. & Sbragaglia, M.2014 Non-locality and viscous drag effects on the shear localisation in soft-glassy materials. arXiv:1410.3643.Google Scholar
Schall, P. & van Hecke, M. 2010 Shear bands in matter with granularity. Annu. Rev. Fluid Mech. 42, 6788.CrossRefGoogle Scholar
Schall, P., Weitz, D. & Spaepen, F. 2007 Structural rearrangements that govern flow in colloidal glasses. Science 318, 18951899.Google Scholar
Schwartz, L. W., Princen, H. M. & Kiss, A. D. 1986 On the motion of bubbles in capillary tubes. J. Fluid Mech. 172, 259275.Google Scholar
Seul, M. & Andelman, D. 1995 Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476483.CrossRefGoogle ScholarPubMed
Shore, J. D., Holzer, M. & Sethna, J.-P. 1992 Logaritmic slow domain growth in nonrandomly frustrated systems: Ising models with competing interactions. Phys. Rev. B 46, 1137611404.Google Scholar
Shan, X. 2008 Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E 77, 066702.Google Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 18151819.Google Scholar
Shan, X. & Chen, H. 1994 Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 29412948.Google Scholar
Shan, X., Yuan, X.-F. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413441.Google Scholar
Sollich, P. 1998 Rheology of soft glassy materials. Phys. Rev. E 58, 738759.Google Scholar
Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. 1997 Rheology of soft glassy materials. Phys. Rev. Lett. 78, 20202023.Google Scholar
Toshev, B. V. 2008 Thermodynamic theory of thin liquid films including line tension effects. Curr. Opin. Colloid Interface Sci. 13, 100106.Google Scholar
Wang, Y., Krishan, K. & Dennin, M. 2006 Impact of boundaries on velocity profiles in bubble rafts. Phys. Rev. E 73, 031401.Google Scholar
Weaire, D., Clancy, R. J. & Hutzler, S. 2009 A simple analytical theory of localisation in 2D foam rheology. Phil. Mag. Lett. 89, 294299.Google Scholar
Weaire, D., Hutzler, S., Langlois, V. J. & Clancy, R. J. 2008 Velocity dependence of shear localisation in a 2D foam. Phil. Mag. Lett. 88, 387396.Google Scholar