Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T02:25:05.079Z Has data issue: false hasContentIssue false

Unsteady aerodynamics and vortex-sheet formation of a two-dimensional airfoil

Published online by Cambridge University Press:  02 October 2017

X. Xia
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
K. Mohseni*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6250, USA
*
Email address for correspondence: mohseni@ufl.edu

Abstract

Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modelling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical steady Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad hoc implementation, the unsteady Kutta condition, the conservation of circulation as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for several airfoil motions in steady and unsteady background flows.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, I. H., von Doenhoff, A. E. & Stivers, L. Jr 1945 Summary of airfoil data. Tech. Rep. NACA-TR-824.Google Scholar
Ansari, S. A., Zbikowski, R. & Knowles, K. 2006a Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1. Methodology and analysis. Proc. IMechE G: J. Aerosp. Engng 220 (2), 6183.Google Scholar
Ansari, S. A., Zbikowski, R. & Knowles, K. 2006b Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 2: implementation and validation. Proc. IMechE G 220 (3), 169186.Google Scholar
Basu, B. C. & Hancock, G. J. 1978 The unsteady motion a two-dimensional aerofoil in incompressible inviscid flow. J. Fluid Mech. 87, 159178.CrossRefGoogle Scholar
Birkhoff, G. 1962 Helmholtz and taylor instability. Proc. Symp. Appl. Math. 13, 5576.Google Scholar
Chen, S.-H. & Ho, C.-M. 1987 Near wake of an unsteady symmetric airfoil. J. Fluids Struct. 1 (2), 151164.CrossRefGoogle Scholar
Cheng, B., Sane, S. P., Barbera, G., Troolin, D. R., Strand, T. & Deng, X. 2013 Three-dimensional flow visualization and vorticity dynamics in revolving wings. Exp. Fluids 54 (1), 1423.CrossRefGoogle Scholar
Crighton, D. G. 1985 The Kutta condition in unsteady flow. Annu. Rev. Fluid Mech. 17, 411445.CrossRefGoogle Scholar
Daniels, P. G. 1978 On the unsteady Kutta condition. Q. J. Mech. Appl. Maths 31 (1), 4975.CrossRefGoogle Scholar
DeVoria, A. C. & Ringuette, M. J. 2012 Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins. Exp. Fluids 52 (2), 441462.CrossRefGoogle Scholar
Dickinson, M. H. & Gotz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol. 174, 4564.Google Scholar
Dickinson, M. H., Lehmann, F. O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.Google Scholar
Eldredge, J. D. 2010 A reconciliation of viscous and inviscid approaches to computing locomotion of deforming bodies. Exp. Mech. 50 (9), 13491353.CrossRefGoogle Scholar
Ellington, C. P. 1984 The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305 (1122), 79113.Google Scholar
Fage, A. & Johanson, F. C. 1927 On the flow of air behind an inclined flat plate of infinite span. Proc. R. Soc. Lond. A 116 (773), 170197.Google Scholar
Ford, C. W. P. & Babinsky, H. 2013 Lift and the leading-edge vortex. J. Fluid Mech. 720, 280313.CrossRefGoogle Scholar
Giesing, J. P. 1969 Vorticity and Kutta condition for unsteady multienergy flows. Trans. ASME J. Appl. Mech. 36 (3), 608613.Google Scholar
Helmholtz, H. 1867 On integrals of hydrodynamical equations which express vortex-motion. Phil. Mag. 4 (226), 485512.Google Scholar
Hemati, M. S., Eldredge, J. D. & Speyer, J. L. 2014 Improving vortex methods via optimal control theory. J. Fluids Struct. 49, 91111.Google Scholar
Ho, C. M. & Chen, S. H. 1981 Unsteady Kutta condition of a plunging airfoil. In Unsteady Turbulent Shear Flows (IUTAM Symposium, Toulouse, France), pp. 197206.Google Scholar
Huang, M.-K. & Chow, C.-Y. 1982 Trapping of a free vortex by Joukowski airfoils. AIAA J. 20 (3), 292298.CrossRefGoogle Scholar
Izraelevitz, J. S. & Triantafyllou, M. S. 2014 Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils. J. Fluid Mech. 742, 534.Google Scholar
Jones, M. A. 2003 The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech. 496, 405441.CrossRefGoogle Scholar
Kaplan, W. 2002 Advanced Calculus, 5th edn. Addison-Wesley.Google Scholar
Katz, J. 1981 A discrete vortex method for the non-steady separated flow over an airfoil. J. Fluid Mech. 102, 315328.Google Scholar
Katz, J. & Plotkin, A. 1991 Low-Speed Aerodynamics: From Wing Theory to Panel Methods. McGraw-Hill.Google Scholar
Kim, D. & Gharib, M. 2010 Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49 (1), 329339.Google Scholar
Krasny, R. 1986a Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292313.Google Scholar
Krasny, R. 1986b A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 6593.Google Scholar
Krasny, R. 1991 Vortex sheet computations: roll-up, wakes, separation. Lectures Appl. Math. 28 (1), 385401.Google Scholar
Li, J. & Wu, Z. 2015 Unsteady lift for the Wagner problem in the presence of additional leading/trailing edge vortices. J. Fluid Mech. 769, 182217.Google Scholar
Li, J. & Wu, Z. 2016 A vortex force study for a flat plate at high angle of attack. J. Fluid Mech. 801, 222249.Google Scholar
Lin, C. C. 1941 On the motion of vortices in two dimensions-I. Existence of the Kirchhoff–Routh function. Proc. Natl Acad. Sci. USA 27 (12), 570575.Google Scholar
Liu, H. & Kawachi, K. 1998 A numerical study of insect flight. J. Comput. Phys. 146 (1), 124156.CrossRefGoogle Scholar
Liu, L. Q., Zhu, J. Y. & Wu, J. Z. 2015b Lift and drag in two-dimensional steady viscous and compressible flow. J. Fluid Mech. 784, 304341.CrossRefGoogle Scholar
Liu, Y., Cheng, B., Sane, S. P. & Deng, X. 2015a Aerodynamics of dynamic wing flexion in translating wings. Exp. Fluids 56 (6), 131.CrossRefGoogle Scholar
Lua, K. B., Lim, T. T. & Yeo, K. S. 2008 Aerodynamic forces and flow fields of a two-dimensional hovering wings. Exp. Fluids 45 (6), 10471065.CrossRefGoogle Scholar
Maskell, E. C.1971 On the Kutta–Joukowski condition in two-dimensional unsteady flow. Unpublished note, Royal Aircraft Establishment, Farnborough, England.Google Scholar
Michelin, S. & Smith, S. G. L. 2009 An unsteady point vortex method for coupled fluid-solid problems. Theor. Comput. Fluid Dyn. 23 (2), 127153.Google Scholar
Milne-Thomson, L. M. 1958 Theoretical Aerodynamics. Dover.Google Scholar
Minotti, F. O. 2002 Unsteady two-dimensional theory of a flapping wing. Phys. Rev. E 66 (5), 051907.Google Scholar
Moore, D. W. 1974 A numerical study of the roll-up of a finite vortex sheet. J. Fluid Mech. 63, 225235.Google Scholar
Morino, L. & Kuo, C. 1974 Subsonic potential aerodynamics for complex configurations: a general theory. AIAA J. 12 (2), 191197.CrossRefGoogle Scholar
Mourtos, N. J. & Brooks, M. 1996 Flow past a flat plate with a vortex/sink combination. Trans. ASME J. Appl. Mech. 63 (2), 543550.Google Scholar
Nitsche, M. & Krasny, R. 1994 A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139161.CrossRefGoogle Scholar
Onoue, K. & Breuer, K. S. 2016 Vortex formation and shedding from a cyber-physical pitching plate. J. Fluid Mech. 793, 229247.Google Scholar
Orszag, S. A. & Crow, S. C. 1970 Instability of a vortex sheet leaving a semi-infinite plate. Stud. Appl. Maths 49 (2), 167181.Google Scholar
Pan, Y., Dong, X., Zhu, Q. & Yue, D. K. P. 2012 Boundary-element method for the prediction of performance of flapping foils with leading-edge separation. J. Fluid Mech. 698, 446467.Google Scholar
Polet, D. T., Rival, D. E. & Weymouth, G. D. 2015 Unsteady dynamics of rapid perching manoeuvres. J. Fluid Mech. 767, 323341.Google Scholar
Poling, D. R. & Telionis, D. P. 1986 The response of airfoils to periodic disturbances – the unsteady Kutta condition. AIAA J. 24 (2), 193199.Google Scholar
Poling, D. R. & Telionis, D. P. 1987 The trailing edge of a pitching airfoil at high reduced frequency. Trans ASME J. Fluids Engng 109 (4), 410414.Google Scholar
Pullin, D. I. & Wang, Z. J. 2004 Unsteady forces on an accelerating plate and application to hovering insect flight. J. Fluid Mech. 509, 121.Google Scholar
Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M. V. & Edwards, J. R. 2014 Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500538.Google Scholar
Read, D. A., Hover, F. S. & Triantafyllou, M. S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17 (1), 163183.Google Scholar
Rott, N. 1956 Diffraction of a weak shock with vortex generation. J. Fluid Mech. 1, 111128.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Saffman, P. G. & Sheffield, J. S. 1977 Flow over a wing with an attached free vortex. Stud. Appl. Maths 57, 107117.Google Scholar
Schouveiler, L., Hover, F. S. & Triantafyllou, M. S. 2005 Performance of flapping foil propulsion. J. Fluids Struct. 20 (7), 949959.Google Scholar
Sears, W. R. 1956 Some recent developments in airfoil theory. J. Aero. Sci. 23 (5), 490499.Google Scholar
Sears, W. R. 1976 Unsteady motion of airfoils with boundary-layer separation. AIAA J. 14 (2), 490499.Google Scholar
Sheldahl, R. E. & Klimas, P. C.1981 Aerodynamic characteristics of seven symmetrical airfoil sections through $180^{\circ }$ angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Tech. Rep. No. SAND-80-2114. Sandia National Labs., Albuquerque, NM (USA).Google Scholar
Shukla, R. K. & Eldredge, J. D. 2007 An inviscid model for vortex shedding from a deforming body. Theor. Comput. Fluid Dyn. 21 (5), 343368.Google Scholar
Streitlien, K. & Triantafyllou, M. S. 1995 Force and moment on a Joukowski profile in the presence of point vortices. AIAA J. 33 (4), 603610.Google Scholar
Sun, M. & Tang, J. 2002 Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Expl Biol. 205 (1), 5570.Google Scholar
Wagner, H. 1925 Über die Entstehung des dynamischen Auftriebes von Tragflügeln. Z. Angew. Math. Mech. 5, 1735.Google Scholar
Wang, C. & Eldredge, J. D. 2013 Low-order phenomenological modeling of leading-edge vortex formation. Theor. Comput. Fluid Dyn. 27 (5), 577598.Google Scholar
Wang, Z. J., Birch, J. M. & Dickinson, M. H. 2004 Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Expl Biol. 207, 10631072.Google Scholar
Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19 (4), 432441.CrossRefGoogle Scholar
Wu, J. Z., Ma, H. Y. & Zhou, M. D. 2006 Vorticity and Vortex Dynamics. Springer.Google Scholar
Xia, X. & Mohseni, K. 2013a Lift evaluation of a two-dimensional pitching flat plate. Phys. Fluids 25 (9), 091901.Google Scholar
Xia, X. & Mohseni, K. 2013b Modeling of 2D unsteady motion of a flat plate using potential flow. In Proceedings of the AIAA Applied Aerodynamics Conference, San Diego, CA, USA.Google Scholar
Xia, X. & Mohseni, K. 2014 A flat plate with unsteady motion: effect of angle of attack on vortex shedding. In Proceedings of the AIAA Aerospace Sciences Meeting, National Harbor, MD, USA.Google Scholar
Xia, X. & Mohseni, K. 2015 Enhancing lift on a flat plate using vortex pairs generated by synthetic jet. In Proceedings of the AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA.Google Scholar
Xu, M. & Wei, M. 2016 Using adjoint-based optimization to study kinematics and deformation of flapping wings. J. Fluid Mech. 799, 5699.Google Scholar
Yu, Y., Tong, B. & Ma, H. 2003 An analytic approach to theoretical modeling of highly unsteady viscous flow excited by wing flapping in small insects. Acta Mechanica Sin. 19 (6), 508516.Google Scholar
Zhu, Q., Wolfgang, M. J., Yue, D. K. P. & Triantafyllou, M. S. 2002 Three-dimensional flow structures and vorticity control in fish-like swimming. J. Fluid Mech. 468, 128.Google Scholar