Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T19:58:18.106Z Has data issue: false hasContentIssue false

Upstream vortex and elastic wave in the viscoelastic flow around a confined cylinder

Published online by Cambridge University Press:  11 February 2019

Boyang Qin*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
Paul F. Salipante
Affiliation:
Polymers and Complex Fluids Group, National Institute of Standard and Technology, Gaithersburg, MD 20899, USA
Steven D. Hudson
Affiliation:
Polymers and Complex Fluids Group, National Institute of Standard and Technology, Gaithersburg, MD 20899, USA
Paulo E. Arratia*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
*
Email addresses for correspondence: bqin@princeton.edu, parratia@seas.upenn.edu
Email addresses for correspondence: bqin@princeton.edu, parratia@seas.upenn.edu

Abstract

Viscoelastic flow past a cylinder is a classic benchmark problem that is not completely understood. Using novel three-dimensional (3D) holographic particle velocimetry, we report three main discoveries of the elastic instability upstream of a single cylinder in viscoelastic channel flow. First, we observe that upstream vortices initiate at the corner between the cylinder and the wall, and grow with increasing flow rate. Second, beyond a critical Weissenberg number, the flow upstream becomes unsteady and switches between two bistable configurations, leading to symmetry breaking in the cylinder axis direction that is highly 3D in nature. Lastly, we find that the disturbance of the elastic instability propagates relatively far upstream via an elastic wave, and is weakly correlated with that in the cylinder wake. The wave speed and the extent of the instability increase with Weissenberg number, indicating an absolute instability in viscoelastic fluids.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, M. A., Pinho, F. T. & Oliveira, P. J. 2001 The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods. J. Non-Newtonian Fluid Mech. 97 (2–3), 207232.Google Scholar
Boger, D. V. 1987 Viscoelastic flows through contractions. Annu. Rev. Fluid Mech. 19 (1), 157182.Google Scholar
Chhabra, R. P., Comiti, J. & Machač, I. 2001 Flow of non-Newtonian fluids in fixed and fluidised beds. Chem. Engng Sci. 56 (1), 127.Google Scholar
Chilcott, M. D. & Rallison, J. M. 1988 Creeping flow of dilute polymer solutions past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381432.Google Scholar
De, S., van der Schaaf, J., Deen, N. G., Kuipers, J. A. M., Peters, E. & Padding, J. T. 2017 Lane change in flows through pillared microchannels. Phys. Fluids 29 (11), 113102.Google Scholar
Dhahir, S. A. & Walters, K. 1989 On non-Newtonian flow past a cylinder in a confined flow. J. Rheol. 33 (6), 781804.Google Scholar
Grilli, M., Vázquez-Quesada, A. & Ellero, M. 2013 Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles. Phys. Rev. Lett. 110, 174501.Google Scholar
Gulati, S., Dutcher, C. S., Liepmann, D. & Muller, S. J. 2010 Elastic secondary flows in sharp 90 degree micro-bends: a comparison of PEO and DNA solutions. J. Rheol. 54 (2), 375392.Google Scholar
Haward, S. J., Toda-Peters, K. & Shen, A. Q. 2018 Steady viscoelastic flow around high-aspect-ratio, low-blockage-ratio microfluidic cylinders. J. Non-Newtonian Fluid Mech. 254, 2335.Google Scholar
Hwang, M. Y., Mohammadigoushki, H. & Muller, S. J. 2017 Flow of viscoelastic fluids around a sharp microfluidic bend: role of wormlike micellar structure. Phys. Rev. Fluids 2 (4), 043303.Google Scholar
Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., Benveniste, H., Vates, G. E., Deane, R., Goldman, S. A., Nagelhus, E. A. & Nedergaard, M. 2012 A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid 𝛽. Sci. Transl. Med. 4 (147), 147ra111.Google Scholar
James, D. F., Shiau, T. & Aldridge, P. M. 2016 Flow of a boger fluid around an isolated cylinder. J. Rheol. 60 (6), 11371149.Google Scholar
Kawale, D., Bouwman, G., Sachdev, S., Zitha, P. L. J., Kreutzer, M. T., Rossen, W. R. & Boukany, P. E. 2017 Polymer conformation during flow in porous media. Soft Matter 13 (46), 87458755.Google Scholar
Lubansky, A. S., Boger, D. V., Servais, C., Burbidge, A. S. & Cooper-White, J. J. 2007 An approximate solution to flow through a contraction for high Trouton ratio fluids. J. Non-Newtonian Fluid Mech. 144 (2–3), 8797.Google Scholar
Marsden, A. L. 2014 Optimization in cardiovascular modeling. Annu. Rev. Fluid Mech. 46 (1), 519546.Google Scholar
McKinley, G. H., Armstrong, R. C. & Brown, R. A. 1993 The wake instability in viscoelastic flow past confined circular cylinders. Phil. Trans. R. Soc. Lond. A 344 (1671), 265304.Google Scholar
Mena, B. & Caswell, B. 1974 Slow flow of an elastic-viscous fluid past an immersed body. Chem. Engng J. 8 (2), 125134.Google Scholar
Miller, E. & Cooper-White, J. J. 2009 The effects of chain conformation in the microfluidic entry flow of polymer–surfactant systems. J. Non-Newtonian Fluid Mech. 160 (1), 2230.Google Scholar
Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31 (5), 9991006.Google Scholar
Omowunmi, S. C. & Yuan, X. 2010 Modelling the three-dimensional flow of a semi-dilute polymer solution in microfluidics on the effect of aspect ratio. Rheol. Acta 49 (6), 585595.Google Scholar
Pakdel, P. & McKinley, G. H. 1996 Elastic instability and curved streamlines. Phys. Rev. Lett. 77 (12), 24592462.Google Scholar
Pan, L., Morozov, A., Wagner, C. & Arratia, P. E. 2013 Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys. Rev. Lett. 110 (17), 174502.Google Scholar
Qin, B. & Arratia, P. E. 2017 Characterizing elastic turbulence in channel flows at low Reynolds number. Phys. Rev. Fluids 2 (8), 083302.Google Scholar
Rodd, L. E., Cooper-White, J. J., Boger, D. V. & McKinley, G. H. 2007 Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries. J. Non-Newtonian Fluid Mech. 143 (2–3), 170191.Google Scholar
Rodd, L. E., Lee, D., Ahn, K. H. & Cooper-White, J. J. 2010 The importance of downstream events in microfluidic viscoelastic entry flows: consequences of increasing the constriction length. J. Non-Newtonian Fluid Mech. 165 (19–20), 11891203.Google Scholar
Salipante, P. F., Little, C. A. E. & Hudson, S. D. 2017 Jetting of a shear banding fluid in rectangular ducts. Phys. Rev. Fluids 2 (3), 033302.Google Scholar
Shi, X. & Christopher, G. F. 2016 Growth of viscoelastic instabilities around linear cylinder arrays. Phys. Fluids 28 (12), 124102.Google Scholar
Ultman, J. S. & Denn, M. M. 1971 Slow viscoelastic flow past submerged objects. Chem. Engng J. 2 (2), 8189.Google Scholar
Van Saarloos, W. 2003 Front propagation into unstable states. Phys. Rep. 386 (2–6), 29222.Google Scholar
Varshney, A. & Steinberg, V. 2017 Elastic wake instabilities in a creeping flow between two obstacles. Phys. Rev. Fluids 2, 051301.Google Scholar