Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T02:37:52.114Z Has data issue: false hasContentIssue false

A variational principle for three-dimensional interactions between water waves and a floating rigid body with interior fluid motion

Published online by Cambridge University Press:  13 March 2019

Hamid Alemi Ardakani*
Affiliation:
Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
*
Email address for correspondence: h.alemi-ardakani@exeter.ac.uk

Abstract

A variational principle is given for the motion of a rigid body dynamically coupled to its interior fluid sloshing in three-dimensional rotating and translating coordinates. The fluid is assumed to be inviscid and incompressible. The Euler–Poincaré reduction framework of rigid body dynamics is adapted to derive the coupled partial differential equations for the angular momentum and linear momentum of the rigid body and for the motion of the interior fluid relative to the body coordinate system attached to the moving rigid body. The variational principle is extended to the problem of interactions between gravity-driven potential flow water waves and a freely floating rigid body dynamically coupled to its interior fluid motion in three dimensions.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemi Ardakani, H. 2016 A symplectic integrator for dynamic coupling between nonlinear vessel motion with variable cross-section and bottom topography and interior shallow-water sloshing. J. Fluids Struct. 65, 3043.Google Scholar
Alemi Ardakani, H. 2017 A coupled variational principle for 2D interactions between water waves and a rigid body containing fluid. J. Fluid Mech. 827, R2 1–12.Google Scholar
Alemi Ardakani, H. & Bridges, T. J. 2011 Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in three dimensions. J. Fluid Mech. 667, 474519.Google Scholar
Bateman, H. 1932 Partial Differential Equations of Mathematical Physics. Cambridge University Press.Google Scholar
Bokhove, O. & Oliver, M. 2006 Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows. Proc. R. Soc. A 462, 25752592.Google Scholar
Bretherton, F. P. 1970 A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44, 1931.Google Scholar
Broer, L. J. F. 1974 On the Hamiltonian theory for surface waves. Appl. Sci. Res. 29, 430446.Google Scholar
Calderer, A., Guo, X., Shen, L. & Sotiropoulos, F. 2018 Fluid–structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines. J. Comput. Phys. 355, 144175.Google Scholar
Chernousko, F. L. 1965 Motion of a rigid body with cavities filled with viscous fluid at small Reynolds numbers. USSR Comput. Maths Math. Phys. 5, 99127.Google Scholar
Chernousko, F. L.1972 Motion of a Rigid Body with Cavities Containing a Viscous Fluid. NASA Technical Translations.Google Scholar
Cotter, C. & Bokhove, O. 2010 Variational water-wave model with accurate dispersion and vertical vorticity. J. Engng Maths 67, 3354.Google Scholar
Van Daalen, E. F. G., Van Groesen, E. & Zandbergen, P. J. 1993 A Hamiltonian formulation for nonlinear wave-body interactions. In Proceedings of the Eight International Workshop on Water Waves and Floating Bodies, Canada, pp. 159163. IWWWFB.Google Scholar
Daniliuk, I. I. 1976 On integral functionals with a variable domain of integration. In Proceedings of the Steklov Institute of Mathematics, vol. 118, pp. 144. American Mathematical Society.Google Scholar
Desbrun, M., Gawlik, E. S., Gay-Balmaz, F. & Zeitlin, V. 2014 Variational discretization for rotating stratified fluids. J. Discrete Continuous Dyn. Syst. 34, 477509.Google Scholar
Disser, K., Galdi, G. P., Mazzone, G. & Zunino, P. 2016 Intertial motions of a rigid body with a cavity filled with a viscous liquid. Arch. Rat. Mech. Anal. 221, 487526.Google Scholar
Faltinsen, O. M & Timokha, A. N. 2009 Sloshing. Cambridge University Press.Google Scholar
Flanders, H. 1973 Differentiation under the integral sign. Am. Math. Mon. 80, 615627.Google Scholar
Gagarina, E., Ambati, V. R., Nurijanyan, S., van der Vegt, J. J. W. & Bokhove, O. 2016 On variational and symplectic time integrators for Hamiltonian systems. J. Comput. Phys. 306, 370389.Google Scholar
Gagarina, E., Ambati, V. R., van der Vegt, J. J. W. & Bokhove, O. 2014 Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves. J. Comput. Phys. 275, 459483.Google Scholar
Gagarina, E., van der Vegt, J. & Bokhove, O. 2013 Horizontal circulation and jumps in Hamiltonian wave models. Nonlinear Process. Geophys. 20, 483500.Google Scholar
Gawlik, E. S., Mullen, P., Pavlov, D., Marsden, J. E. & Desbrun, M. 2011 Geometric, variational discretization of continuum theories. Physica D 240, 17241760.Google Scholar
Gay-Balmaz, F., Marsden, J. E. & Ratiu, T. S. 2012 Reduced variational formulations in free boundary continuum mechanics. J. Nonlinear Sci. 22, 463497.Google Scholar
Gerrits, J. & Veldman, A. E. P. 2003 Dynamics of liquid-filled spacecraft. J. Engng Maths 45, 2138.Google Scholar
Greenhill, A. G. 1880 On the general motion of a liquid ellipsoid. Proc. Camb. Phil. Soc. 4, 414.Google Scholar
Van Groesen, E. & Andonowati 2017 Hamiltonian Boussinesq formulation of wave–ship interactions. Appl. Math. Model. 42, 133144.Google Scholar
Holm, D. D., Marsden, J. E. & Ratiu, T. S. 1998a The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Maths 137, 181.Google Scholar
Holm, D. D., Marsden, J. E. & Ratiu, T. S. 1998b The Euler–Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80, 41734176.Google Scholar
Holm, D. D., Marsden, J. E. & Ratiu, T. S.1999 The Euler–Poincaré equations in geophysical fluid dynamics. arXiv:chao-dyn/9903035.Google Scholar
Holm, D. D., Schmah, T. & Stoica, C. 2009 Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford University Press.Google Scholar
Hough, S. S. 1895 The oscillations of a rotating ellipsoidal shell containing fluid. Phil. Trans. R. Soc. Lond. A 186, 469506.Google Scholar
Ibrahim, R. A. 2005 Liquid Sloshing Dynamics. Cambridge University Press.Google Scholar
Kalogirou, A. & Bokhove, O. 2016 Mathematical and numerical modelling of wave impact on wave-energy buoys. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, p. 8. The American Society of Mechanical Engineers.Google Scholar
Kostyuchenko, A. G., Shkalikov, A. A. & Yurkin, M. Y. 1998 On the stability of a top with a cavity filled with a viscous fluid. Funct. Anal. Appl. 32, 100113.Google Scholar
Lewis, D., Marsden, J. E., Montgomery, R. & Ratiu, T. S. 1986 The Hamiltonian structure for dynamic free boundary problems. Physica D 18, 391404.Google Scholar
Leybourne, M., Batten, W. M. J., Bahaj, A. S., Minns, N. & O’Nians, J. 2014 Preliminary design of the OWEL wave energy converter pre-commercial demonstrator. Renewable Energy 61, 5156.Google Scholar
Luke, J. C. 1967 A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395397.Google Scholar
Lukovsky, I. A. 1976 Variational method in the nonlinear problems of the dynamics of a limited liquid volume with free surface. In Oscillations of Elastic Constructions with Liquid, pp. 260264. Volna (in Russian).Google Scholar
Lukovsky, I. A. 2015 Nonlinear Dynamics: Mathematical Models for Rigid Bodies with a Liquid. De Gruyter.Google Scholar
Marsden, J. E. & Ratiu, T. S. 1999 Introduction to Mechanics and Symmetry. Springer.Google Scholar
Marsden, J. E. & West, M. 2001 Discrete mechanics and variational integrators. Acta Numerica 10, 357514.Google Scholar
Mazer, A. & Ratiu, T. S. 1989 Hamiltonian formulation of adiabatic free-boundary Euler flows. J. Geom. Phys. 6, 271291.Google Scholar
Miles, J. W. 1976 Nonlinear surface waves in closed basins. J. Fluid Mech. 75, 419448.Google Scholar
Miles, J. W. 1977 On Hamilton’s principle for surface waves. J. Fluid Mech. 83, 153158.Google Scholar
Miloh, T. 1984 Hamilton’s principle, Lagrange’s method, and ship motion theory. J. Ship Res. 28, 229237.Google Scholar
Moiseyev, N. N. & Rumyantsev, V. V. 1968 Dynamic Stability of Bodies Containing Fluid. Springer.Google Scholar
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.Google Scholar
Murray, R. M., Lin, Z. X. & Sastry, S. S. 1994 A Mathematical Introduction to Robotic Manipulation. CRC Press.Google Scholar
Oliver, M. 2014 A variational derivation of the geostrophic momentum approximation. J. Fluid Mech. 751, R2 1–10.Google Scholar
Oliver, M. 2006 Variational asymptotics for rotating shallow water near geostrophy: a transformational approach. J. Fluid Mech. 551, 197234.Google Scholar
O’Reilly, O. M. 2008 Intermediate Dynamics for Engineers: a Unified Treatment of Newton–Euler and Lagrangian Mechanics. Cambridge University Press.Google Scholar
Pavlov, D., Mullen, P., Tong, Y, Kanso, E., Marsden, J. E. & Desbrun, M. 2011 Sructure-preserving discretization of incompressible fluids. Physica D 240, 443458.Google Scholar
Ramodanov, S. M. & Sidorenko, V. V. 2017 Dynamics of a rigid body with an ellipsoidal cavity filled with viscous fluid. Intl J. Non-Linear Mech. 95, 4246.Google Scholar
Rumiantsev, V. V. 1966 On the theory of motion of rigid bodies with fluid-filled cavities. J. Appl. Math. Mech. 30, 5777.Google Scholar
Rumyantsev, V. V. 1963 Lyapunov’s method in the study of the stability of rigid bodies with fluid-filled cavities. Izv. Akad. Nauk SSSR (Series Mekh. Mashinostr.) 6, 119140.Google Scholar
Salmon, R. 1983 Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431444.Google Scholar
Salmon, R. 1988 Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech. 20, 225256.Google Scholar
Shepherd, T. G. 1990 Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys. 32, 287338.Google Scholar
Stokes, G. G. 1880 Mathematical and Physical Papers, vol. 1. Cambridge University Press.Google Scholar
Strygin, V. V. & Sobolev, V. A. 1988 Separation of Motions By the Integral Manifolds Method. Nauka (in Russian).Google Scholar
Timokha, A. N. 2016 The Bateman-Luke variational formalism in a sloshing with rotational flows. Dopov. Nac. Akad. Nauk Ukr. 4, 3034.Google Scholar
Veldman, A. E. P., Gerrits, J., Luppes, R., Helder, J. A. & Vreeburg, J. P. B. 2007 The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys. 224, 8299.Google Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite-amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.Google Scholar
Zhukovskii, N. Y. 1885 On the motion of a rigid body with cavities filled with a homogeneous liquid drop. Zh. Fiz.-Khim. Obs. Phys. 17, 81113.Google Scholar
Zhukovskii, N. E. 1948 Motion of a rigid body having a cavity filled with fluid. Collected Works, vol. 1, pp. 31152. Gostekhizdat.Google Scholar