Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T19:43:11.554Z Has data issue: false hasContentIssue false

Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters

Published online by Cambridge University Press:  08 October 2007

G. GULITSKI
Affiliation:
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
M. KHOLMYANSKY
Affiliation:
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
W. KINZELBACH
Affiliation:
Institute of Environmental Engineering, ETH Zürich, CH-8093 Zürich, Switzerland
B. LÜTHI
Affiliation:
Institute of Environmental Engineering, ETH Zürich, CH-8093 Zürich, Switzerland
A. TSINOBER
Affiliation:
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
S. YORISH
Affiliation:
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

We report the first results of an experiment, in which explicit information on all velocity derivatives (the nine spatial derivatives, ∂uixj, and the three temporal derivatives, ∂ui/∂t) along with the three components of velocity fluctuations at a Reynolds number as high as Reλ~104 is obtained. No use of the Taylor hypothesis was made, and this allowed us to obtain a variety of results concerning acceleration and its different Eulerian components along with vorticity, strain and other small-scale quantities. The field experiments were performed at five heights between 0.8 and 10m above the ground.

The report consists of three parts. Part 1 is devoted to the description of facilities, methods and some general results. Part 2 concerns accelerations and related matters. Part 3 is devoted to the issues concerning temperature with the emphasis on joint statistics of temperature and velocity derivatives.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aringazin, A. K. & Mazhitov, M. I. 2004 Stochastic models of Lagrangian acceleration of fluid particle in developed turbulence. Intl J. Mod. Phys. B18, 30953168.CrossRefGoogle Scholar
Bernard, P. S., Thomas, J. M., Handler, R. A. 1993 Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253, 385419.CrossRefGoogle Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A., Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93, 064502/1–4.CrossRefGoogle ScholarPubMed
Borgas, M. S. & Sawford, B. L. 1991 The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion. J. Fluid Mech. 228, 295320.Google Scholar
Busen, R., Gulitsky, G., Kholmyansky, M., Schumann, U., Tsinober, A. & Yorish, S. 2001 An airborne experiment on turbulent velocity derivatives. Final Report for the German Israeli Foundation, Grant no. I-541-132.08/97.Google Scholar
Chen, L., Goto, S. & Vassilicos, J. C. 2006 Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech. 553, 143154.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2001 The small-scale structure of acceleration in turbulent channel flow. In Proceedings of the Second International Symposium on Turbulence and Shear Flow Phenomena, Stockholm, June, 27–29, 2001 (ed. Lindborg, E., Johansson, A., Eaton, J., Humphrey, J., Kasagi, N., Leschziner, M. & Sommerfeld, M.), vol. 1, pp. 21–26.Google Scholar
Christensen, K. T. & Adrian, R. J. 2002 a Measurements of instantaneous Eulerian acceleration fields by particle image accelerometry: method and accuracy. Exps. Fluids 33, 759769.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2002 b The velocity and acceleration signatures of small-scale vortices in turbulent channel flow. J. Turbulence 3, 023/1–28.CrossRefGoogle Scholar
Crawford, A. M., Mordant, N., Bodenschatz, E. 2005 Joint statistics of the Lagrangian acceleration and velocity in fully developed turbulence. Phys. Rev. Lett. 94, 024501/1–4.CrossRefGoogle ScholarPubMed
Dahm, W. J. A. & Southerland, K. B. 1997 Experimental assessment of Taylor's hypothesis and its applicability to dissipation estimates in turbulent flows. Phys. Fluids 9, 21012107.CrossRefGoogle Scholar
Galanti, B., Gulitsky, G., Kholmyansky, M., Tsinober, A. & Yorish, S. 2003 Velocity derivatives in turbulent flow in an atmospheric boundary layer without Taylor hypothesis. In Turbulence and Shear Flow Phenomena (ed. Kasagi, N., Eaton, J. K., Friedrich, R., Humphrey, J. A. C., Leschziner, M. A. & Miyauchi, T.), vol. 2, pp. 745–750.Google Scholar
Galanti, B., Gulitsky, G., Kholmyansky, M., Tsinober, A. & Yorish, S. 2004 Joint statistical properties of fine structure of velocity and passive scalar in high Reynolds number flows. Adv. Turbulence 10, 267270.Google Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 a Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results. J. Fluid Mech. 589, 5781.CrossRefGoogle Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 b Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J. Fluid Mech. 589, 103123.CrossRefGoogle Scholar
Gylfason, A., Ayyalasomayajula, S. & Warhaft, Z. 2004 Intermittency, pressure and acceleration statistics from hot-wire measurements in wind-tunnel turbulence. J. Fluid Mech. 501, 213229.CrossRefGoogle Scholar
Hill, R. J. 2002 Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech. 452, 361370.CrossRefGoogle Scholar
Hill, R. J. & Thoroddsen, S. T. 1997 Experimental evaluation of acceleration correlations for locally isotropic turbulence. Phys. Rev. E 55, 16001606.Google Scholar
Hill, R. J. & Wilczak, J. M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247269.CrossRefGoogle Scholar
Hua, B. L. & Klein, P. 1998 An exact criterion for the stirring properties of nearly two-dimensional turbulence. Physica D 113, 98110.Google Scholar
Jørgensen, J. B., Mann, J., Ott, S., Pecseli, H. L., Trulsen, J. 2005 Experimental studies of occupation and transit times in turbulent flows. Phys. Fluids 17 (3), 035111.CrossRefGoogle Scholar
Kholmyansky, M. & Tsinober, A. 2000 On the origins of intermittency in real turbulent flows. In Proceedings of the Symposium on Intermittency in turbulent flows and other dynamical systems held at Isaac Newton Institute, Cambridge, June 21–24, 1999 (ed. Vassilicos, J. C.). Isaac Newton Institute for Mathematical Sciences, Preprint NI99017-TRB. Cambridge University Press.Google Scholar
Kholmyansky, M., Tsinober, A. & Yorish, S. 2000 Geometrical statistics in the atmospheric turbulent flow at Re λ = 104. Adv. Turbulence 8, 895898.Google Scholar
Kholmyansky, M., Tsinober, A. & Yorish, S. 2001 a Velocity derivatives in the atmospheric surface layer at Re λ = 104. Phys. Fluids 13, 311314.CrossRefGoogle Scholar
Kholmyansky, M., Tsinober, A. & Yorish, S. 2001 b Velocity derivatives in the atmospheric surface layer at Re λ = 104. Further results. In Proceedings of the Second International Symposium on Turbulence and Shear Flow Phenomena, Stockholm, June, 27–29, 2001 (ed. Lindborg, E., Johansson, A., Eaton, J., Humphrey, J., Kasagi, N., Leschziner, M. & Sommerfeld, M.), vol. 1, pp. 109–113.Google Scholar
La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J., Bodenschatz, E. 2001 Fluid particle accelerations in fully developed turbulence. Nature 409, 10171019.CrossRefGoogle ScholarPubMed
Lee, C., Yeo, K. & Choi, J.-I. 2004 Intermittent nature of acceleration in near wall turbulence. Phys. Rev. Lett. 92, 144502/1–4.CrossRefGoogle ScholarPubMed
Lüthi, B., Burr, U., Gyr, A., Kinzelbach, W. & Tsinober, A. 2001 Velocity derivatives in turbulent flow from 3D-PTV measurements. In Proceedings of the Second International Symposium on Turbulence and Shear Flow Phenomena, Stockholm, June, 27–29, 2001 (ed. Lindborg, E., Johansson, A., Eaton, J., Humphrey, J., Kasagi, N., Leschziner, M. & Sommerfeld, M.), vol. 2, pp. 123–128.Google Scholar
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87118.CrossRefGoogle Scholar
Mann, J., Ott, S. & Andersen, J. S. 1999 Experimental study of relative, turbulent diffusion. Tech. Rep. RISOE-R-1036(EN). RISOE Natl Lab. Roskilde, Denmark.Google Scholar
Mann, J., Ott, S., Pecseli, H. L. & Trulsen, J. 2005 Turbulent particle flux to a perfectly absorbing surface. J. Fluid Mech. 534, 121.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Mordant, N., Delour, J., Léveque, E., Michel, O., Arnéodo, A. & Pinton, J.-F. 2003 Lagrangian velocity fluctuations in fully developed turbulence: scaling, intermittency, and dynamics. J. Stat. Phys. 113, 701717.CrossRefGoogle Scholar
Mordant, N., Crawford, A. M. & Bodenschatz, E. 2004 a Experimental Lagrangian acceleration probability density function measurement. Physica D 193, 245251.Google Scholar
Mordant, N., Crawford, A. M. & Bodenschatz, E. 2004 b Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93, 214501/1–4.CrossRefGoogle ScholarPubMed
Mordant, N., Lévêque, E. & Pinton, J.-F. 2004 c Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 116/1–44.CrossRefGoogle Scholar
Obukhov, A. M. & Yaglom, A. M. 1951 The microstructure of turbulent flow. Prikl. Mat. Mekh. 15, 326, english translation in NACA TM 1350, National Advisory Committee for Aeronautics, Washington, DC, June 1953.Google Scholar
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207223.CrossRefGoogle Scholar
Pinsky, M., Khain, A. & Tsinober, A. 2000 Accelerations in isotropic and homogeneous turbulence and Taylor's hypothesis. Phys. Fluids 12, 31953204.CrossRefGoogle Scholar
Pope, S. B. 2002 A stochastic Lagrangian model for acceleration in turbulent flows. Phys. Fluids 14, 23602375, erratum: Phys. Fluids 15, 269.CrossRefGoogle Scholar
Reynolds, A. M., Mordant, N., Crawford, A. M., Bodenschatz, E. 2005 On the distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7, 58/1–9.CrossRefGoogle Scholar
Sawford, B. L., Yeung, P. K., Borgas, M. S., Vedula, P., La Porta, A., Crawford, A. M., Bodenschatz, E. 2003 Conditional and unconditional acceleration statistics in turbulence. Phys. Fluids 15, 34783489.CrossRefGoogle Scholar
Shaw, R. A. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
Shaw, R. A. & Oncley, S. P. 2001 Acceleration intermittency and enhanced collision kernels in turbulent clouds. Atmos. Res. 59–60, 7787.CrossRefGoogle Scholar
Taylor, G. I. 1935 The statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421478.Google Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561567.CrossRefGoogle Scholar
Tsinober, A. 2001 An Informal Introduction to Turbulence. Kluwer.CrossRefGoogle Scholar
Tsinober, A., Kit, E. & Dracos, T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169192.CrossRefGoogle Scholar
Tsinober, A., Shtilman, L. & Vaisburd, H. 1997 A study of vortex stretching and enstrophy generation in numerical and laboratory turbulence. Fluid Dyn. Res. 21, 477494.CrossRefGoogle Scholar
Tsinober, A., Vedula, P. & Yeung, P. K. 2001 Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence. Phys. Fluids 13, 19741984.CrossRefGoogle Scholar
Vedula, P. & Yeung, P. K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11, 12081220.CrossRefGoogle Scholar
Voth, G. A., Satyanarayan, K., Bodenschatz, E. 1998 Lagrangian acceleration measurements at large Reynolds numbers. Phys. Fluids 10, 22682280.CrossRefGoogle Scholar
Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J., Bodenschatz, E. 2002 Measurement of fluid particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Vukoslavcevic, P., Wallace, J. M. & Balint, J.-L. 1991 The velocity and vorticity vector fields of a turbulent boundary layer. Part 1. Simultaneous measurement by hot-wire anemometry. J. Fluid Mech. 228, 2551.Google Scholar
Yaglom, A. M. 1949 On the field of accelerations in turbulent flow. Dokl. Akad. Nauk SSSR 67, 795798.Google Scholar
Yeung, P. K. 1997 One- and two-particle Lagrangian acceleration correlations in numerically simulated homogeneous turbulence. Phys. Fluids 9, 29812990.CrossRefGoogle Scholar
Yeung, P. K. & Borgas, M. S. 2004 Relative dispersion in isotropic turbulence. Part 1. Direct numerical simulations and Reynolds-number dependence. J. Fluid Mech. 503, 93124.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B., Lamorgese, A. G., Donzis, D. A. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.CrossRefGoogle Scholar