Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T08:06:18.970Z Has data issue: false hasContentIssue false

Velocity-derivative skewness in small Reynolds number, nearly isotropic turbulence

Published online by Cambridge University Press:  19 April 2006

S. Tavoularis
Affiliation:
Department of Mechanics and Materials Science, The Johns Hopkins University, Baltimore, Maryland 21218
J. C. Bennett
Affiliation:
United Technologies Research Center, East Hartford, Connecticut 06108
S. Corrsin
Affiliation:
United Technologies Research Center, East Hartford, Connecticut 06108

Abstract

Previous measurements in the moderate to small Reynolds number range of isotropic turbulence have all shown the skewness factor $S\equiv -{\overline{(\partial u/\partial x)^3}}/[\overline{(\partial u/\partial x)^2}]^{\frac{3}{2}}$ of the streamwise velocity derivative to increase with decreasing Reynolds number. This ‘paradoxical’ trend was found for 150 ≥ Rλ ≥ 4. New data covering the range 4 ≥ Rλ ≥ 1 show a maximum S for Rλ between 4 and 3 and a rapid decrease for Rλ < 2.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. & Townsend, A. A. 1948 Proc. Roy. Soc. A 194, 527.
Batchelor, G. K. & Townsend, A. A. 1949 Proc. Roy. Soc. A 199, 238.
Bennett, J. C. & Corrsin, S. 1978 Submitted to Phys. Fluids.Google Scholar
Betchov, R. & Lorenzen, C. 1974 Phys. Fluids 17, 1503.
Champagne, F. H., Pao, Y. H. & Wygnanski, I. J. 1976 J. Fluid Mech. 74, 209.
Comte-Bellot, G. 1965 Publ. Sci. Tech. Minist. de l'Air no. 419.
Deissler, R. G. 1957 Phys. Fluids 1, 111.
Elena, M., Chauve, M.-P. & Dumas, R. 1977 C. R. Acad. Sci. Paris B 284, 77.
Frenkiel, F. & Klebanoff, P. S. 1971 J. Fluid Mech. 48, 183.
Friehe, C., Van atta, C. W. & Gibson, C. H. 1972 Proc. AGARD Conf. Turbulent Shear Flows, London, Sept. 1971. AGARD Conf. Proc. no. 83, p. 18–1.
Gibson, C. H., Stegen, G. R. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Kármán, T. Von & Howarth, L. 1938 Proc. Roy. Soc. A 164, 192.
Kuo, A. Y. & Corrsin, S. 1971 J. Fluid Mech. 50, 285.
Lin, C. C. & Reid, W. H. 1963 Turbulent Flow, Theoretical Aspects. Handbuch der Physik, vol. 8, p. 485. Springer.
Mills, R. R., Kistler, A. L., O'BRIEN, V. & Corrsin, S.1958 N.A.C.A. Tech. Note no. 4288.
Saffman, P. G. 1967 J. Fluid Mech. 27, 581.
Stewart, R. W. & Townsend, A. A. 1951 Phil. Trans. Roy. Soc. A 243, 359.
Tavoularis, S. 1978 Ph.D. dissertation, The Johns Hopkins University, Baltimore.
Taylor, G. I. 1938 Proc. Roy. Soc. A 164, 15.
Ueda, H. & Hinze, J. O. 1975 J. Fluid Mech. 67, 125.
Wyngaard, J. C. & Tennekes, H. 1970 Phys. Fluids 13, 1962.