Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T19:43:42.723Z Has data issue: false hasContentIssue false

Verified and validated calculation of unsteady dynamics of viscous hydrogen–air detonations

Published online by Cambridge University Press:  16 March 2015

C. M. Romick*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
T. D. Aslam
Affiliation:
Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
J. M. Powers
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: cromick@nd.edu

Abstract

The dynamics of one-dimensional, piston-driven hydrogen–air detonations are predicted in the presence of physical mass, momentum and energy diffusion. The calculations are automatically verified by the use of an adaptive wavelet-based computational method which correlates a user-specified error tolerance to the error in the calculations. The predicted frequency of 0.97 MHz for an overdriven pulsating detonation agrees well with the 1.04 MHz frequency observed by Lehr in a shock-induced combustion experiment around a spherical projectile, thus giving a limited validation for the model. A study is performed in which the supporting piston velocity is varied, and the long time behaviour is examined for an initially stoichiometric mixture at 293.15 K and 1 atm. Several distinct propagation behaviours are predicted: a stable detonation, a high-frequency pulsating detonation, a pulsating detonation with two competing modes, a low-frequency pulsating detonation and a propagating detonation with many active frequencies. In the low-frequency pulsating mode, the long time behaviour undergoes a phenomenon similar to period-doubling. Harmonic analysis is used to examine how the frequency of the pulsations evolves as the supporting piston velocity is varied. It is found that the addition of viscosity shifts the neutral stability boundary by about 2 % with respect to the supporting piston velocity. As the supporting piston velocity is lowered, the intrinsic instability grows in strength, and the effect of viscosity is weakened such that the results are indistinguishable from the inviscid predictions.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Khateeb, A. N., Powers, J. M. & Paolucci, S. 2010 On the necessary grid resolution for verified calculation of premixed laminar flames. Commun. Comput. Phys. 8 (2), 304326.CrossRefGoogle Scholar
Al-Khateeb, A. N., Powers, J. M. & Paolucci, S. 2013 Analysis of the spatio-temporal scales of laminar premixed flames near equilibrium. Combust. Theor. Model. 17 (1), 560595.CrossRefGoogle Scholar
Billinger, D. R. 2001 Time Series: Data Analysis and Theory. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Chinnayya, A., Hadjadj, A. & Ngomo, D. 2013 Computational study of detonation wave propagation in narrow channels. Phys. Fluids 25 (3), 036101.CrossRefGoogle Scholar
Clarke, J. F., Kassoy, D. R., Meharzi, N. E., Riley, N. & Vasantha, R. 1990 On the evolution of plane detonations. Proc. R. Soc. Lond. A 429 (1877), 259283.Google Scholar
Clarke, J. F., Kassoy, D. R. & Riley, N. 1986 On the direct initiation of a plane detonation wave. Proc. R. Soc. Lond. A 408 (1834), 129148.Google Scholar
Daimon, Y. & Matsuo, A. 2007 Unsteady features on one-dimensional hydrogen–air detonations. Phys. Fluids 19 (11), 116101.CrossRefGoogle Scholar
Deiterding, R. 2009 A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains. Comput. Struct. 87 (11–12), 769783.CrossRefGoogle Scholar
Eckett, C. A.2001 Numerical and analytical studies of the dynamics of gaseous detonations. PhD thesis, California Institute of Technology.Google Scholar
Fickett, W. & Davis, W. C. 1979 Detonation. University of California Press.Google Scholar
Gasser, I. & Szmolyan, P. 1993 A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24 (4), 968986.CrossRefGoogle Scholar
Hamilton, J. D. 1994 Time Series Analysis. Princeton University Press.CrossRefGoogle Scholar
Henrick, A. K., Aslam, T. D. & Powers, J. M. 2006 Simulations of pulsating one-dimensional detonations with true fifth-order accuracy. J. Comput. Phys. 213 (1), 311329.CrossRefGoogle Scholar
Hirschfelder, J. O. & Curtiss, C. F. 1958 Theory of detonations. I. Irreversible unimolecular reaction. J. Chem. Phys. 28 (6), 11301147.CrossRefGoogle Scholar
Hu, X. Y., Zhang, D. L., Khoo, B. C. & Jiang, Z. L. 2004 The cellular structure of a two-dimensional $\text{H}_{2}/\text{O}_{2}/\text{Ar}$ detonation wave. Combust. Theor. Model. 8 (2), 339359.CrossRefGoogle Scholar
Hu, X. Y., Zhang, D. L., Khoo, B. C. & Jiang, Z. L. 2005 The structure and evolution of a two-dimensional $\text{H}_{2}/\text{O}_{2}/\text{Ar}$ cellular detonation. Shock Waves 14 (1–2), 3744.CrossRefGoogle Scholar
Ivanov, M. F., Kiverin, A. D. & Liberman, M. A. 2011 Hydrogen–oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model. Phys. Rev. E 83 (5), 056313.CrossRefGoogle ScholarPubMed
Ivanov, M. F., Kiverin, A. D., Yakovenko, I. S. & Liberman, M. A. 2013 Hydrogen–oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls. Intl J. Hydrog. Energy 38, 1642716440.CrossRefGoogle Scholar
Kasimov, A. R. & Stewart, D. S. 2004 On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame. Phys. Fluids 16 (10), 3566.CrossRefGoogle Scholar
Kassoy, D. R. 2010 The response of a compressible gas to extremely rapid transient, spatially resolved energy addition: an asymptotic formulation. J. Engng Maths 68, 249262.CrossRefGoogle Scholar
Kassoy, D. R., Kuehn, J. A., Nabity, M. W. & Clarke, J. F. 2008 Detonation initiation of the microsecond time scale: DDTs. Combust. Theor. Model. 12 (6), 10091047.CrossRefGoogle Scholar
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A.1991 A Fortran computer code package for the evaluation of gas-phase multi-component transport properties. Tech. Rep. SAND86–8246. Sandia National Laboratories.Google Scholar
Kee, R. J., Rupley, F. M. & Miller, J. A.1992 Chemkin II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Tech. Rep. SAND89-8009B. Sandia National Laboratories.Google Scholar
Kivotides, D. 2007 Viscous microdetonation physics. Phys. Lett. A 363 (5–6), 458467.CrossRefGoogle Scholar
Lehr, H. F. 1972 Experiments on shock-induced combustion. Acta Astronaut. 17, 589597.Google Scholar
Liberman, M. A., Ivanov, M. F., Kiverin, A. D., Kuznetsov, M. S., Chukalovsky, A. A. & Rakhimova, T. V. 2010 Deflagration-to-detonation transition in highly reactive combustible mixtures. Acta Astronaut. 67, 688701.CrossRefGoogle Scholar
Liberman, M. A., Kiverin, A. D. & Ivanov, M. F. 2012 Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models. Phys. Rev. E 85 (5), 056312.CrossRefGoogle ScholarPubMed
Lv, Y. & Ihme, M. 2014 Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105137.CrossRefGoogle Scholar
Lyng, G. & Zumbrun, K. 2004 One-dimensional stability of viscous strong detonation waves. Arch. Rat. Mech. Anal. 173, 213277.CrossRefGoogle Scholar
Mazaheri, K., Mahmoudi, Y. & Radulescu, M. I. 2012 Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159 (6), 21382154.CrossRefGoogle Scholar
Merk, H. J. 1959 The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems. Appl. Sci. Res. 8 (1), 7399.CrossRefGoogle Scholar
Miller, J. A., Mitchell, R. E., Smooke, M. D. & Kee, R. J.1982 Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. In Nineteenth Symposium (International) on Combustion. Technion-Israel Institute of Technology. Hafia, Israel. 8–13 August 1982, Vol. 19 (1), pp. 181–196; doi:10.1016/S0082-0784(82)80189-6.CrossRefGoogle Scholar
Ng, H. D., Higgins, A. J., Kiyanda, C. B., Radulescu, M. I., Lee, J. H. S., Bates, K. R. & Nikiforakis, N. 2005 Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theor. Model. 9 (1), 159170.CrossRefGoogle Scholar
Oppenheim, A. V. & Schafer, R. W. 1975 Digital Signal Proccessing. Prentice-Hall.Google Scholar
Oran, E. S., Weber, J. W., Lefebvre, E. I. & Anderson, J. D. 1998 A numerical study of a two-dimensional $\text{H}_{2}{-}\text{O}_{2}{-}\text{Ar}$ detonation using a detailed chemical reaction model. Combust. Flame 113 (1–2), 147163.CrossRefGoogle Scholar
Paolucci, S., Zikoski, Z. & Grenga, T. 2014a WAMR: an adaptive wavelet method for the simulation of compressible reactive flow. Part II. The parallel algorithm. J. Comput. Phys. 272, 842864.CrossRefGoogle Scholar
Paolucci, S., Zikoski, Z. & Wirasaet, D. 2014b WAMR: an adaptive wavelet method for the simulation of compressible reactive flow. Part I. Accuracy and efficiency of the algorithm. J. Comput. Phys. 272, 814841.CrossRefGoogle Scholar
Powers, J. M. 2006 Review of multiscale modeling of detonation. J. Propul. Power 22 (6), 12171229.CrossRefGoogle Scholar
Powers, J. M. & Paolucci, S. 2005 Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43 (5), 10881099.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P.(Eds) 1996 Numerical Recipes in FORTRAN 90: The Art of Parallel Scientific Computing. Cambridge University Press.Google Scholar
Regele, J. D., Kassoy, D. R. & Vasilyev, O. V. 2012 Effect of high activation energies on acoustic timescale detonation initiation. Combust. Theor. Model. 16 (4), 650678.CrossRefGoogle Scholar
Romick, C. M., Aslam, T. D. & Powers, J. M. 2012 The effect of diffusion on the dynamics of unsteady detonations. J. Fluid Mech. 699, 453464.CrossRefGoogle Scholar
Shepherd, J. E. 2009 Detonation in gases. Proc. Combust. Inst. 32, 8398.CrossRefGoogle Scholar
Short, M. 1996 An asymptotic derivation of the linear stability of the square-wave detonation using the newtonian limit. Proc. R. Soc. Lond. A 452 (1953), 22032224.Google Scholar
Singh, S., Powers, J. M. & Paolucci, S.1999 Detonation solutions from reactive Navier–Stokes equations. AIAA Paper 1999-0966.CrossRefGoogle Scholar
Singh, S., Rastigejev, Y., Paolucci, S. & Powers, J. M. 2001 Viscous detonation in $\text{H}_{2}{-}\text{O}_{2}{-}\text{Ar}$ using intrinsic low-dimensional manifolds and wavelet adaptive multilevel representation. Combust. Theor. Model. 5 (2), 163184.CrossRefGoogle Scholar
Strogatz, S. H. 2014 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press.Google Scholar
Sussman, M. A.1995 Numerical simulation of shock-induced combustion. PhD thesis, Stanford University.Google Scholar
Taylor, B. D., Kessler, D. A., Gamezo, V. N. & Oran, E. S.2012 The influence of chemical kinetics on the structure of hydrogen–air detonations. AIAA Paper 2012-0979.CrossRefGoogle Scholar
Texier, B. & Zumbrun, K. 2011 Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions. Commun. Math. Phys. 302, 151.CrossRefGoogle Scholar
Tsuboi, N., Eto, K. & Hayashi, A. K. 2007 Detailed structure of spinning detonation in a circular tube. Combust. Flame 149 (1–2), 144161.CrossRefGoogle Scholar
Vasilyev, O. V. & Paolucci, S. 1996 Dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J. Comput. Phys. 125 (2), 498512.CrossRefGoogle Scholar
Vasilyev, O. V. & Paolucci, S. 1997 A fast adaptive wavelet collocation algorithm for multidimensional PDEs. J. Comput. Phys. 138 (1), 1656.CrossRefGoogle Scholar
Wood, W. W. 1963 Existence of detonations for large values of the rate parameter. Phys. Fluids 6 (8), 10811090.CrossRefGoogle Scholar
Xu, S., Aslam, T. D. & Stewart, D. S. 1997 High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries. Combust. Theor. Model. 1, 113142.CrossRefGoogle Scholar
Yungster, S. & Radhakrishan, K. 2004 Pulsating one-dimensional detonations in hydrogen–air mixtures. Combust. Theor. Model. 8 (4), 745770.CrossRefGoogle Scholar
Zakharov, V. E. & Ostrovsky, L. A. 2009 Modulation instability: the beginning. Physica D 238 (5), 540548.CrossRefGoogle Scholar
Ziegler, J. L., Deiterding, R., Shepherd, J. E. & Pullin, D. I. 2011 An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry. J. Comput. Phys. 230 (20), 75987630.CrossRefGoogle Scholar