Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T07:11:36.608Z Has data issue: false hasContentIssue false

The viscosity of bimodal and polydisperse suspensions of hard spheres in the dilute limit

Published online by Cambridge University Press:  26 April 2006

N. J. Wagner
Affiliation:
Department of Chemical Engineering, University of Delaware, Newark DE 19716 USA
A. T. J. M Woutersen
Affiliation:
The University of Utrecht, Department of Physical and Colloid Chemistry, Utrecht, Netherlands Current address: DSM Research, 6160 MD, Geleen, The Netherlands.

Abstract

An exact result is calculated numerically for the dilute limiting, zero shear viscosity of bimodal suspensions of hard spheres. The required hydrodynamic functions are calculated from recent results for the resistivities of unequal spheres. Both the hydrodynamic and Brownian contributions to the Huggins coefficient exhibit a minimum that is symmetric in mixing volume fraction. The resultant minimum deepens with increasing size ratio. The results are discussed in the light of published measurements of the viscosity for bimodal suspensions and previous phenomenological theories. The reduction of viscosity upon mixing is seen to be a result of near-field hydrodynamic shielding of asymmetric particle pairs. It is also shown that the use of far-field hydrodynamic interactions yields qualitatively incorrect results for the viscosity of binary mixtures. A parametrization of the bimodal results allows an estimation of the effects of suspension polydispersity on the Huggins coefficient. For polydispersities of ten percent or less, the Huggins coefficient is essentially unchanged from the value calculated for an equivalent, monodisperse suspension at equal volume fraction. A parametrization of these results is provided for relating the reduction in Huggins coefficient to the polydispersity index.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, N. L. & Shen, H. T. 1979 Rheological characteristics of solid-liquid mixtures. AIChE J. 25, 327332.Google Scholar
Batchelor, G. K. 1976 Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74, 129.Google Scholar
Batchelor, G. K. 1977 The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97117.Google Scholar
Batchelor, G. K. 1983 Diffusion in a dilute polydisperse system of interacting spheres. J. Fluid Mech. 131, 155175 and Corrigendum. 137, 467–469.Google Scholar
Batchelor, G. K. & Green, J. T. 1972a The hydrodynamic interaction of two small freely-moving spheres in a linear flow field.. J. Fluid Mech. 56, 375400.Google Scholar
Batchelor, G. K. & Green, J. T. 1972b The determination of the bulk stress in a suspension of spherical particles to order. c2. J. Fluid Mech. 56, 401427.Google Scholar
Batchelor, G. K. & Wen, C.-S. 1982a Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory.. J. Fluid Mech. 119, 379408.Google Scholar
Batchelor, G. K. & Wen, C.-S. 1982b Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results.. J. Fluid Mech. 124, 495528.Google Scholar
Brady, J. F. 1993a The rheological behavior of concentrated colloidal suspensions.. J. Chem. Phys. 99, 567581.Google Scholar
Brady, J. F. 1993b Brownian motion, hydrodynamics, and the osmotic pressure.. J. Chem. Phys. 98, 33353341.Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Ann. Rev. Fluid Mech. 20, 111157.Google Scholar
Chang, C. & Powell, R. L. 1993 Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles. J. Fluid Mech. 253, 125.Google Scholar
Chong, J. S., Christiansen, E. D. & Baer, A. D. 1971 Rheology of concentrated dispersions. J. Appl. Poly. Sci. 15, 20072021.Google Scholar
Cichocki, B. & Felderhof, B. U. 1988 Long-time self-diffusion coefficient and zero-frequency viscosity of dilute suspensions of spherical Brownian particles. J. Chem. Phys. 89, 37053709.Google Scholar
D'AGUANNO, B. & Klein, R 1991 Structural effects of polydispersity in charged colloidal dispersions. J. Chem. Soc. Faraday Trans. 87, 379.Google Scholar
D'Aguanno, B., Klein, R., Méndez-Alcaraz, J. M., Naegele, G. 1993 Polydisperse complex fluids. In Complex Fluids (ed. L. Garrido). Springer.
Dhont, J. K. G. 1987 Steady state viscosity coefficients of charged colloidal systems. Physica A 146, 541.Google Scholar
Dhont, J. K. G. 1989 On the distortion of the static structure factor of colloidal fluids under shear flow. J. of Fluid Mech. 204, 421431.Google Scholar
Dickinson, E., Parker, R., & Lal, M 1981 Polydispersity and the colloidal order-disorder transition. Chem. Phys. Lett. 79, 578.Google Scholar
Farris, R. J. 1968 Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans. Soc. Rheol. 12, 281301.Google Scholar
Felderhof, B. U. 1988 The contribution of Brownian motion to the viscosity of suspensions of spherical particles. Physica A 147, 203.Google Scholar
Felderhof, B. U. & Jones, R. B. 1987 Linear response theory of the viscosity of suspensions of spherical Brownian particles. Physica A 146, 417.Google Scholar
Goto, S. C. & Kuno, H. 1982 Flow of suspensions containing particles of two different sizes through a capillary tube. J. Rheol. 26, 387398.Google Scholar
Goto, S. C. & Kuno, H. 1984 Flow of suspensions containing particles of two different sizes through a capillary tube. ii. effect of the particle size ratio. J. Rheol. 28, 197205.Google Scholar
Hayter, J. B. 1985 Determination of the structure and dynamics of micellar solutions by neutron small-angle scattering. In Physics of Amphiphiles: Micelles, Vesicles and Microemulsions (ed. V. Degiorgio, & M. Corti), pp. 5993. North-Holland.
Hiemenz, P. 1986 Principles of Colloid and Surface Chemistry, 2nd edn. Marcel Dekker.
Jeffrey, D. J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids A 4, 1629.Google Scholar
Jeffrey, D. J. & Acrivos, A. 1976 The rheological properties of suspensions of rigid particles. AIChE J. 22, 417.Google Scholar
Jeffrey, D. J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.Google Scholar
Jones, R. B. & Burfield, G. S. 1982 Memory effects in the diffusion of an interacting polydisperse suspensions. Physica 111A, 562.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.
Kim, S. & Mifflin, R. T. 1985 The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids 28, 20332045.Google Scholar
Mcquarrie, D. A. 1976 Statistical Mechanics. Harper and Row.
Mittelbach, P. 1965 Einige spezielle bestimmungsmethoden von form und polydispersitaet kol- loider teilchen in verduennter loesung mittels roentgenkleinwinkelstreuung. Kolloid-Z. und Z. Polymers 206, 152159.Google Scholar
Nir, A. & Acrivos, A. 1973 On the creeping motion of two arbitrary-sized touching spheres in a linear shear field. J. Fluid Mech. 59, 209223.Google Scholar
Ohtsuki, T. 1981 Dynamical properties of strongly interacting Brownian particles: I, dynamic shear viscosity. Physica 108A, 441458.Google Scholar
Ohtsuki, T. 1983 Dynamical properties of strongly interacting Brownian particles III. Physica 122A, 212230.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes. Cambridge University Press.
Rodriguez, B. E., Kaler, E. W. & Wolfe, M. S. 1992 Binary mixtures of monodisperse latex dispersions. 2. Viscosity. Langmuir 8, 2382.Google Scholar
Roscoe, R. 1952 The viscosity of suspensions of rigid spheres. Brit. J. Appl. Phys. 3, 267269.Google Scholar
Russel, W. B. 1984 The Huggins coefficient as a means for characterizing suspended particles. J. Chem. Soc. Faraday Trans. (2) 80, 3141.Google Scholar
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.
Senqun, M. Z. & Probstein, R. F. 1989 Bimodal model of slurry viscosity with application to coal-slurries. part 1. theory and experiment. Rheol. Acta 28, 382393.Google Scholar
Shapiro, A. P. & Probstein, R. F. 1992 Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions. Phys. Rev. Lett. 68, 14221424.Google Scholar
Stapleton, M. R., Tildesley, D. J. & Quirke, N. 1990 Phase equilibria in polydispere fluids. J. Chem. Phys. 7, 44564467.Google Scholar
Sweeny, K. & Geckler, R. 1954 The rheology of suspensions. J. Appl. Phys. 25, 11351144.Google Scholar
Van Beurten, P. & Vrij, A. 1981 Polydispersity effects in the small-angle light scattering of concentrated solutions of colloidal spheres. J. Chem. Physics 74, 2744.Google Scholar
Iersel, M. W. F Van. 1987 Viscosity of Bimodal Hard Sphere Suspensions. Masters thesis, Princeton University.
Wagner, N. J., Krause, R., Rennie, A. R., D'Aguanno, B. & Goodwin, J. 1991 The microstructure of charged, polydisperse colloidal suspensions by light and neutrons scattering. J. Chem. Phys. 95, 494508.Google Scholar
Wagner, N. J. & Russel, W. B. 1989 Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows with many-body thermodynamics. Physica 155A, 475518.Google Scholar
Woutersen, A. T. J. M. 1992 The rheology of adhesive hard sphere dispersions. PhD thesis, Utrecht.
Woutersen, A. T. J. M. & De Kruif, C. G. 1993 The viscosity of semi-dilute bidisperse suspensions of hard spheres. J. Rheol. 37, 681.Google Scholar