Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T00:09:16.907Z Has data issue: false hasContentIssue false

A vortex pair in ground effect, dynamics and optimal control

Published online by Cambridge University Press:  27 December 2019

Arnold Wakim*
Affiliation:
Department of Aerodynamics Aeroelasticity Acoustics, ONERA, 8 rue des Vertugadins, 92190Meudon, France
Vincent Brion
Affiliation:
Department of Aerodynamics Aeroelasticity Acoustics, ONERA, 8 rue des Vertugadins, 92190Meudon, France
Agnès Dolfi-Bouteyre
Affiliation:
Departement of Optics and Associated Techniques, ONERA, 8 Chemin de la Hunière, 91120Palaiseau, France
Laurent Jacquin
Affiliation:
Department of Aerodynamics Aeroelasticity Acoustics, ONERA, 8 rue des Vertugadins, 92190Meudon, France
*
Email address for correspondence: arnold.wakim@gmail.com

Abstract

The dynamics and control of a vortex pair in ground effect are investigated in a planar, incompressible and laminar setting. The evolution of the vortices obtained numerically shows vortex rebound as a consequence of the separation of the boundary layer induced at the wall by the vortices. An optimal control approach is developed and employed for vortex Reynolds numbers of 200 and 1000 in order to identify the optimal Dirichlet boundary condition at the wall to counteract this rebound and allow for an increased lateral displacement of the vortex, similarly to the inviscid evolution of the flow, which features hyperbolic trajectories. The work is primarily a conceptual approach to deal with aircraft separation distances in airport airspace by moving the vortices laterally, away from the runway but may also apply to the control of coherent structures in wall bounded turbulence. The most efficient control is able to double the lateral position and yields mostly vertical in and outflow at the wall. An optimal horizon time is found, equal to 5 characteristic time units of the vortex system, beyond which control is not able to further displace the vortices. The control is shown to delay the separation of the boundary layer at the origin of vortex rebound by applying suction ahead of the vortex, and to generate a vorticity flux at the wall, leading to a pusher vortex of sign opposite to that of the primary vortex, that attenuates the effect of the no-slip boundary condition at the wall by pushing the vortex outward.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airbus SAS 2015 Flying by numbers-global market forecast 2015–2034. Tech. Rep. 2. Airbus SAS.Google Scholar
Airiau, C., Bottaro, A., Walther, S. & Legendre, D. 2003 A methodology for optimal laminar flow control: application to the damping of Tollmien–Schlichting waves in a boundary layer. Phys. Fluids 15 (5), 11311145.CrossRefGoogle Scholar
Akhavan, R., Jung, W. J. & Mangiavacchi, N. 1993 Turbulence control in wall-bounded flows by spanwise oscillations. In Advances in Turbulence IV, pp. 299303. Springer.CrossRefGoogle Scholar
Barker, S. J. & Crow, S. C. 1977 The motion of two-dimensional vortex pairs in a ground effect. J. Fluid Mech. 82 (4), 659671.CrossRefGoogle Scholar
Bewley, T. R. 2001 Flow control: new challenges for a new renaissance. Prog. Aerosp. Sci. 37 (1), 2158.CrossRefGoogle Scholar
Bewley, T. R., Moin, P. & Temam, R. 2001 Dns-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179225.CrossRefGoogle Scholar
Bricteux, L., Duponcheel, M., De Visscher, I. & Winckelmans, G. 2016 Les investigation of the transport and decay of various-strengths wake vortices in ground effect and subjected to a turbulent crosswind. Phys. Fluids 28 (6), 065105.CrossRefGoogle Scholar
Choi, H., Hinze, M. & Kunisch, K. 1999 Instantaneous control of backward-facing step flows. Appl. Numer. Maths 31 (2), 133158.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.CrossRefGoogle Scholar
Clercx, H. J. H. & Van Heijst, G. J. F. 2002 Dissipation of kinetic energy in two-dimensional bounded flows. Phys. Rev. E 65 (6), 066305.Google ScholarPubMed
Coutsias, E. A. & Lynov, J.-P. 1991 Fundamental interactions of vortical structures with boundary layers in two-dimensional flows. Physica D: Nonlinear Phenomena 51 (1–3), 482497.CrossRefGoogle Scholar
Davies, C. & Carpenter, P. W. 1997 Instabilities in a plane channel flow between compliant walls. J. Fluid Mech. 352, 205243.CrossRefGoogle Scholar
Dee, F. W. & Nicholas, O. P. 1968 Flight Measurements of Wing-Tip Vortex Motion Near the Ground. Royal Aircraft Establishment.Google Scholar
Endo, T. & Himeno, R. 2002 Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3 (007), 110.CrossRefGoogle Scholar
European Commission, UFO Consortium Parters 2015 Ufo 2015 web page. www.ufo-wind-sensors.eu/home.Google Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 web page. http://nek5000.mcs.anl.gov.Google Scholar
Flinois, T. L. B. & Colonius, T. 2015 Optimal control of circular cylinder wakes using long control horizons. Phys. Fluids 27 (8), 087105.CrossRefGoogle Scholar
Furukawa, M., Inoue, M., Saiki, K. & Yamada, K. 1999 The role of tip leakage vortex breakdown in compressor rotor aerodynamics. Trans. ASME J. Turbomach. 121 (3), 469480.CrossRefGoogle Scholar
Gerz, T., Holzäpfel, F. & Darracq, D. 2002 Commercial aircraft wake vortices. Progr. Aerosp. Sci. 38 (3), 181208.CrossRefGoogle Scholar
Guégan, A., Schmid, P. J. & Huerre, P. 2006 Optimal energy growth and optimal control in swept hiemenz flow. J. Fluid Mech. 566, 1145.CrossRefGoogle Scholar
Hallermeyer, A.2017 Traitement du signal dun lidar doppler scannant dédié á la surveillance aéroportuaire. PhD thesis, Université Paris-Saclay.Google Scholar
Harris, D. M. & Williamson, C. H. K. 2012 Instability of secondary vortices generated by a vortex pair in ground effect. J. Fluid Mech. 700, 148186.CrossRefGoogle Scholar
Harvey, J. K. & Perry, F. J. 1971 Flowfield produced by trailing vortices in the vicinity of the ground. AIAA J. 9 (8), 16591660.CrossRefGoogle Scholar
Hoepffner, J., Bottaro, A. & Favier, J. 2010 Mechanisms of non-modal energy amplification in channel flow between compliant walls. J. Fluid Mech. 642, 489507.CrossRefGoogle Scholar
Holzäpfel, F., Stephan, A., Heel, T. & Körner, S. 2016 Enhanced wake vortex decay in ground proximity triggered by plate lines. Aircraft Engng Aerosp. Technol: An International Journal 88 (2), 206214.CrossRefGoogle Scholar
Homescu, C., Navon, I. M. & Li, Z. 2002 Suppression of vortex shedding for flow around a circular cylinder using optimal control. Intl J. Numer. Methods Fluids 38 (1), 4369.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88 pp. 193–208.Google Scholar
Iverson, K. E. 1962 A programming language. In Proceedings of the May 1–3, 1962, Spring Joint Computer Conference, pp. 345351. ACM.Google Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Kolář, V. 2007 Vortex identification: new requirements and limitations. Intl J. Heat Fluid Flow 28 (4), 638652.CrossRefGoogle Scholar
Koumoutsakos, P. 1997 Active control of vortex–wall interactions. Phys. Fluids 9 (12), 38083816.CrossRefGoogle Scholar
Kravchenko, A., Choi, H. & Moin, P. 1993 On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids A 5 (12), 33073309.CrossRefGoogle Scholar
Lachmann, G. V. 2014 Boundary Layer and Flow Control: Its Principles and Application. Elsevier.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lee, C., Kim, J., Babcock, D. & Goodman, R. 1997 Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9 (6), 17401747.CrossRefGoogle Scholar
Leweke, T., Le Dizes, S. & Williamson, C. H. K. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48, 507541.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Lin, J. C. 2002 Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38 (4–5), 389420.CrossRefGoogle Scholar
Luhar, M., Sharma, A. S. & McKeon, B. J. 2015 A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415441.CrossRefGoogle Scholar
Önder, A. & Meyers, J. 2016 Optimal control of a transitional jet using a continuous adjoint method. Comput. Fluids 126, 1224.CrossRefGoogle Scholar
Orlandi, P. 1990 Vortex dipole rebound from a wall. Phys. Fluids A 2 (8), 14291436.CrossRefGoogle Scholar
Pailhas, G., de Saint, X. & Touvet, Y. 2002 Behaviour of trailing vortices in the vicinity of the ground. In Laser Techniques for Fluid Mechanics, pp. 323338. Springer.CrossRefGoogle Scholar
Peace, A. J. & Riley, N. 1983 A viscous vortex pair in ground effect. J. Fluid Mech. 129, 409426.CrossRefGoogle Scholar
Robins, R. E. & Delisi, D. P. 1993 Potential hazard of aircraft wake vortices in ground effect with crosswind. J. Aircraft 30 (2), 201206.CrossRefGoogle Scholar
Sipp, D. & Jacquin, L. 2003 Widnall instabilities in vortex pairs. Phys. Fluids 15 (7), 18611874.CrossRefGoogle Scholar
Sorvig, K. & Thompson, J. W. 2018 Quietly defend silence. In Sustainable Landscape Construction, pp. 363372. Springer.CrossRefGoogle Scholar
Storer, J. A. & Cumpsty, N. A. 1991 Tip leakage flow in axial compressors. Trans. ASME J. Turbomach. 113 (2), 252259.CrossRefGoogle Scholar
Türk, L., Coors, D. & Jacob, D. 1999 Behavior of wake vortices near the ground over a large range of Reynolds numbers. Aerosp. Sci. Technol. 3 (2), 7181.CrossRefGoogle Scholar
Walther, S., Airiau, C. & Bottaro, A. 2001 Optimal control of Tollmien–Schlichting waves in a developing boundary layer. Phys. Fluids 13 (7), 20872096.CrossRefGoogle Scholar
Widnall, S. E., Bliss, D. B. & Tsai, C. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66 (1), 3547.CrossRefGoogle Scholar
Williamson, C. H. K., Leweke, T., Asselin, D. J. & Harris, D. M. 2014 Phenomena, dynamics and instabilities of vortex pairs. Fluid Dyn. Res. 46 (6), 061425.CrossRefGoogle Scholar
Yeo, K. S. 1992 The three-dimensional stability of boundary-layer flow over compliant walls. J. Fluid Mech. 238, 537577.CrossRefGoogle Scholar
Zheng, Z. C. & Ash, R. L. 1993 Prediction of turbulent wake vortex motion near the ground. ASME-PUBLICATIONS-FED 151, 195195.Google Scholar
Zheng, Z. C. & Ash, R. L. 1996 Study of aircraft wake vortex behavior near the ground. AIAA J. 34 (3), 580589.CrossRefGoogle Scholar