Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T05:35:36.177Z Has data issue: false hasContentIssue false

The vortex street in the wake of a vibrating cylinder

Published online by Cambridge University Press:  29 March 2006

Owen M. Griffin
Affiliation:
Naval Research Laboratory, Washington, D.C. 20390
Charles W. Votaw
Affiliation:
Naval Research Laboratory, Washington, D.C. 20390

Abstract

The von Kármán vortex streets formed in the wakes of vibrating smooth cylinders and cables were studied using a hot-wire anemometer and flow visualization by fog injection in a wind tunnel. All the experiments took place in the flow regime where the vibration and vortex-shedding frequencies lock together, or synchronize, to control the formation of the wake. Since the flow in the vortex formation region is fundamental to further understanding of the interaction between a vibrating bluff obstacle and its wake, detailed measurements were made of the formation-region flow for Reynolds numbers between 120 and 350. The formationregion length is shown to be a fundamental parameter for the wake, and is dependent on a shedding parameter St* related to the natureally occurring Strouhal number for the von Kármán street. The effects of vibration amplitude and frequency on the mean and fluctuating velocity fields in the wake become apparent when the downstream displacement is scaled with the formation length. The von Kármán vortex street behind a vibrating cylinder is divided into three predominant flow regimes: the formation, stable and unstable regions. Fundamental differences exist in the vortex streets generated behind stationary and vibrating cylinders, but many classical characteristics, including the manner of vortex breakdown in the unstable region, are shared by the two systems.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bearman, P. W. 1965 J. Fluid Mech. 21, 241255.
Berger, E. W. 1964 Jahr. Wiss. Ges. L. & R. Berlin.
Berger, E. W. 1967 Phys. Fluids, 10, S 191S 193.
Bishop, R. E. D. & Hassan, A. Y. 1964 Proc. Roy. Soc. A 277, 3275.
Bloor, M. S. 1964 J. Fluid Mech. 19, 290304.
Bloor, M. S. & Gerrard, J. H. 1966 Proc. Roy. Soc. A 294, 319342.
Durgin, W. & Karlsson, S. 1971 J. Fluid Mech. 48, 507527.
Ferguson, N. & Parkinson, G. 1967 Trans. A.S.M.E. J. Eng. Industr. 89, 831838.
Gerrard, J. H. 1966 J. Fluid Mech. 25, 401143.
Goldstein, S. 1938 Modern Developments in Fluid Mechanics, vol. 2. Oxford University Press.
Griffin, O. M. 1971 J. Appl. Mech. 38, 729738.
Griffin, O. M. 1972 Trans. A.S.M.E., J. Eng. Indust. 94, 539547. (See also A.S.M.E. Vibrations Conference Preprint, 71-Vibr-25.)
Koopman, G. H. 1967 J. Fluid Mech. 28, 501512.
Kovasznay, L. S. G. 1949 Proc. Roy. Soc. A 198, 175190.
Mair, W. A. & Maull, D. J. 1971 J. Fluid Mech. 45, 209224.
Mei, V. C. & Currie, I. G. 1969 Phys. Fluids, 12, 22482254.
Roshko, A. 1954a N.A.C.A. Rep. no. 1191.
Roshko, A. 1954b N.A.C.A. Tech. Note, no. 3169.
Schaefer, J. W. & Eskinazi, S. 1959 J. Fluid Mech. 6, 241260.
Taneda, S. 1955 Rep. Res. Inst. Appl. Mech. 4, 2940.
Toebes, G. H. 1968 Trans. A.S.M.E. J. Basic Eng. 91, 493505.
Toebes, G. H. & Ramamurthy, A. S. 1967 Proc. A.S.C.E. J. Eng. Mech. 93 (EMG), 120.
Votaw, C. W. & Griffin, O. M. 1971 Trans. A.S.M.E. J. Basic. Eng. 93, 457461.
Zdravkovich, M. M. 1967 J. Roy. Aero. Soc. 71, 866867.
Zdravkovich, M. M. 1968 J. Fluid Mech. 32, 339351.