Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T07:42:53.789Z Has data issue: false hasContentIssue false

The wake structure of a propeller operating upstream of a hydrofoil

Published online by Cambridge University Press:  06 October 2020

Antonio Posa*
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, 00128Roma, Italy
Riccardo Broglia
Affiliation:
CNR-INM, Institute of Marine Engineering, National Research Council of Italy, Via di Vallerano 139, 00128Roma, Italy
Elias Balaras
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street, N.W., Washington, DC20052, USA
*
Email address for correspondence: antonio.posa@insean.cnr.it

Abstract

Large eddy simulations are presented on the wake flow of a notional propeller (the INSEAN E1658), upstream of a NACA0020 hydrofoil of infinite spanwise extent, mimicking propeller–rudder interaction. Results show that the flow physics is dominated by the interaction between the coherent structures populating the wake of the propeller and the surface of the hydrofoil. The suction and pressure side branches of the tip vortices move towards inner and outer radii, respectively. The hub vortex is split into two branches at the leading edge of the hydrofoil. The two branches of the hub vortex shift in the opposite direction, compared to the tip vortices, towards the rudder suction sides. As a result, a contraction of the propeller wake on the suction sides occurs, leading to increased levels of shear stress and turbulence. At downstream locations along the hydrofoil the spanwise deflection of the suction side branches of the tip vortices affects the trajectory of the overall propeller wake, including also the smaller helical vortices across the span of the wake of each blade and the two branches of the hub vortex on the two sides of the hydrofoil. This cross-stream shift persists, producing a strong anti-symmetry of the overall wake.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asnaghi, A., Svennberg, U. & Bensow, R. E. 2018 Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers. Appl. Ocean Res. 79, 197214.CrossRefGoogle Scholar
Asnaghi, A., Svennberg, U. & Bensow, R. E. 2020 Large eddy simulations of cavitating tip vortex flows. Ocean Engng 195, 106703.CrossRefGoogle Scholar
Balaras, E. 2004 Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33 (3), 375404.CrossRefGoogle Scholar
Balaras, E., Schroeder, S. & Posa, A. 2015 Large-eddy simulations of submarine propellers. J. Ship Res. 59 (4), 227237.CrossRefGoogle Scholar
Choi, J.-E., Kim, J.-H. & Lee, H.-G. 2010 Computational investigation of cavitation on a semi-spade rudder. J. Mar. Sci. Technol. 15 (1), 6477.CrossRefGoogle Scholar
Di Felice, F., Felli, M., Liefvendahl, M. & Svennberg, U. 2009 Numerical and experimental analysis of the wake behavior of a generic submarine propeller. In First International Symposium on Marine Propulsors, SMP09, Trondheim, Norway, MARINTEK (Norwegian Marine Technology Research Institute).Google Scholar
Felli, M., Camussi, R. & Guj, G. 2009 Experimental analysis of the flow field around a propeller-rudder configuration. Exp. Fluids 46 (1), 147164.CrossRefGoogle Scholar
Felli, M. & Falchi, M. 2011 Propeller tip and hub vortex dynamics in the interaction with a rudder. Exp. Fluids 51 (5), 1385.CrossRefGoogle Scholar
Felli, M. & Falchi, M. 2018 A parametric survey of propeller wake instability mechanisms by detailed flow measurement and time resolved visualizations. In 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany, U.S. Office of Naval Research.Google Scholar
Felli, M., Falchi, M. & Pereira, F. 2011 Investigation of the flow field around a propeller-rudder configuration: on-surface pressure measurements and velocity- pressure-phase-locked correlations. In Second International Symposium on Marine Propulsors, SMP11, Hamburg, Germany, Institute for Fluid Dynamics and Ship Theory (FDS), Hamburg University of Technology (TUHH).Google Scholar
Garmann, D. J. & Visbal, M. R. 2015 Interactions of a streamwise-oriented vortex with a finite wing. J. Fluid Mech. 767, 782810.CrossRefGoogle Scholar
Gordnier, R. E. & Visbal, M. R. 1999 Numerical simulation of the impingement of a streamwise vortex on a plate. Intl J. Comput. Fluid Dyn. 12 (1), 4966.CrossRefGoogle Scholar
Green, R. B., Coton, F. N. & Early, J. M. 2006 On the three-dimensional nature of the orthogonal blade-vortex interaction. Exp. Fluids 41 (5), 749761.CrossRefGoogle Scholar
Hu, J., Zhang, W., Sun, S. & Guo, C. 2019 Numerical simulation of vortex-rudder interactions behind the propeller. Ocean Engng 190, 106446.CrossRefGoogle Scholar
Hunt, J. C., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Summer Program 1988, pp. 193–208, Center for Turbulence Research, Stanford University.Google Scholar
Ianniello, S. 2016 The Ffowcs Williams–Hawkings equation for hydroacoustic analysis of rotating blades. Part 1. The rotpole. J. Fluid Mech. 797, 345388.CrossRefGoogle Scholar
Kim, J. M. & Komerath, N. M. 1995 Summary of the interaction of a rotor wake with a circular cylinder. AIAA J. 33 (3), 470478.CrossRefGoogle Scholar
Lee, J. A., Burggraf, O. R. & Conlisk, A. T. 1998 On the impulsive blocking of a vortex-jet. J. Fluid Mech. 369, 301331.CrossRefGoogle Scholar
Liefvendahl, M. 2010 Investigation of propeller wake instability using LES. Ship Technol. Res. 57 (2), 100106.CrossRefGoogle Scholar
Liefvendahl, M., Felli, M. & Tröeng, C. 2010 Investigation of wake dynamics of a submarine propeller. In Proceedings of the 28th Symposium on Naval Hydrodynamics, Pasadena, CA, USA, U.S. Office of Naval Research.Google Scholar
Liu, X. & Marshall, J. S. 2004 Blade penetration into a vortex core with and without axial core flow. J. Fluid Mech. 519, 81103.CrossRefGoogle Scholar
Lu, N. X., Bensow, R. E. & Bark, G. 2014 Large eddy simulation of cavitation development on highly skewed propellers. J. Mar. Sci. Technol. 19 (2), 197214.CrossRefGoogle Scholar
Marshall, J. S. 1994 Vortex cutting by a blade. I-General theory and a simple solution. AIAA J. 32 (6), 11451150.CrossRefGoogle Scholar
Marshall, J. S. 2002 Models of secondary vorticity evolution during normal vortex-cylinder interaction. AIAA J. 40 (1), 170172.CrossRefGoogle Scholar
Marshall, J. S. & Grant, J. R. 1996 Penetration of a blade into a vortex core: vorticity response and unsteady blade forces. J. Fluid Mech. 306, 83109.CrossRefGoogle Scholar
Marshall, J. S. & Krishnamoorthy, S. 1997 On the instantaneous cutting of a columnar vortex with non-zero axial flow. J. Fluid Mech. 351, 4174.CrossRefGoogle Scholar
Marshall, J. S. & Yalamanchili, R. 1994 Vortex cutting by a blade. II-computations of vortex response. AIAA J. 32 (7), 14281436.CrossRefGoogle Scholar
McKenna, C., Bross, M. & Rockwell, D. 2017 Structure of a streamwise-oriented vortex incident upon a wing. J. Fluid Mech. 816, 306330.CrossRefGoogle Scholar
Muscari, R., Dubbioso, G. & Di Mascio, A. 2017 Analysis of the flow field around a rudder in the wake of a simplified marine propeller. J. Fluid Mech. 814, 547569.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.CrossRefGoogle Scholar
Paik, B.-G., Kim, G.-D., Kim, K.-S., Kim, K.-Y. & Suh, S.-B. 2012 Measurements of the rudder inflow affecting the rudder cavitation. Ocean Engng 48, 19.CrossRefGoogle Scholar
Paik, B.-G., Kim, K.-Y., Kim, K.-S., Park, S., Heo, J. & Yu, B.-S. 2010 Influence of propeller wake sheet on rudder gap flow and gap cavitation. Ocean Engng 37 (16), 14181427.CrossRefGoogle Scholar
Posa, A. & Balaras, E. 2016 A numerical investigation of the wake of an axisymmetric body with appendages. J. Fluid Mech. 792, 470498.CrossRefGoogle Scholar
Posa, A. & Balaras, E. 2018 Large-eddy simulations of a notional submarine in towed and self-propelled configurations. Comput. Fluids 165, 116126.CrossRefGoogle Scholar
Posa, A. & Balaras, E. 2020 A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution. J. Fluid Mech. 884, A41.CrossRefGoogle Scholar
Posa, A., Broglia, R. & Balaras, E. 2019 a LES study of the wake features of a propeller in presence of an upstream rudder. Comput. Fluids 192, 104247.CrossRefGoogle Scholar
Posa, A., Broglia, R., Felli, M., Falchi, M. & Balaras, E. 2018 Numerical investigation of the wake of a propeller by large-eddy simulation. In 32nd Symposium on Naval Hydrodynamics, Hamburg, Germany, U.S. Office of Naval Research.CrossRefGoogle Scholar
Posa, A., Broglia, R., Felli, M., Falchi, M. & Balaras, E. 2019 b Characterization of the wake of a submarine propeller via large-eddy simulation. Comput. Fluids 184, 138152.CrossRefGoogle Scholar
Posa, A. & Lippolis, A. 2018 A LES investigation of off-design performance of a centrifugal pump with variable-geometry diffuser. Intl J. Heat Fluid Flow 70, 299314.CrossRefGoogle Scholar
Posa, A. & Lippolis, A. 2019 Effect of working conditions and diffuser setting angle on pressure fluctuations within a centrifugal pump. Intl J. Heat Fluid Flow 75, 4460.CrossRefGoogle Scholar
Posa, A., Lippolis, A. & Balaras, E. 2015 Large-eddy simulation of a mixed-flow pump at off-design conditions. Trans. ASME: J. Fluids Engng 137 (10), 101302.Google Scholar
Posa, A., Lippolis, A. & Balaras, E. 2016 Investigation of separation phenomena in a radial pump at reduced flow rate by large eddy simulation. Trans. ASME: J. Fluids Engng 138 (12), 121101.Google Scholar
Quaglia, M. E., Léonard, T., Moreau, S. & Roger, M. 2017 A 3D analytical model for orthogonal blade-vortex interaction noise. J. Sound Vib. 399, 104123.CrossRefGoogle Scholar
Rhee, S. H., Lee, C., Lee, H. B. & Oh, J. 2010 Rudder gap cavitation: fundamental understanding and its suppression devices. Intl J. Heat Fluid Flow 31 (4), 640650.CrossRefGoogle Scholar
Rockwell, D. 1998 Vortex-body interactions. Annu. Rev. Fluid Mech. 30 (1), 199229.CrossRefGoogle Scholar
Roger, M., Schram, C. & Moreau, S. 2014 On vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics. J. Sound Vib. 333 (1), 283306.CrossRefGoogle Scholar
Rossi, T. & Toivanen, J. 1999 A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20 (5), 17781793.CrossRefGoogle Scholar
Saunders, D. C. & Marshall, J. S. 2015 Vorticity reconnection during vortex cutting by a blade. J. Fluid Mech. 782, 3762.CrossRefGoogle Scholar
Saunders, D. C. & Marshall, J. S. 2017 Transient lift force on a blade during cutting of a vortex with non-zero axial flow. J. Fluid Mech. 819, 258284.CrossRefGoogle Scholar
Van Kan, J. J. I. M. 1986 A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (3), 870891.CrossRefGoogle Scholar
Van Terwisga, T. J., Fitzsimmons, P. A., Ziru, L. & Foeth, E. J. 2009 Cavitation erosion - a review of physical mechanisms and erosion risk models. In Seventh International Symposium on Cavitation, CAV2009, Ann Arbor, Michigan, USA, University of Michigan.Google Scholar
Wang, L., Guo, C., Xu, P. & Su, Y. 2019 Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engng 188, 106250.CrossRefGoogle Scholar
Yang, J. & Balaras, E. 2006 An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comput. Phys. 215 (1), 1240.CrossRefGoogle Scholar
Yang, Y., Veldhuis, L. L. M. & Eitelberg, G. 2017 a Aerodynamic impact of a streamwise vortex on a propeller. Aerosp. Sci. Technol. 70, 108120.CrossRefGoogle Scholar
Yang, Y., Zhou, T., Sciacchitano, A., Veldhuis, L. L. M. & Eitelberg, G. 2017 b Experimental investigation of the impact of a propeller on a streamwise impinging vortex. Aerosp. Sci. Technol. 69, 582594.CrossRefGoogle Scholar