Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T22:40:52.980Z Has data issue: false hasContentIssue false

Wall turbulence without walls

Published online by Cambridge University Press:  16 April 2013

Yoshinori Mizuno
Affiliation:
School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain
Javier Jiménez*
Affiliation:
School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain Centre for Turbulence Research, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: jimenez@torroja.dmt.upm.es

Abstract

We perform direct numerical simulations of turbulent channels whose inner layer is replaced by an off-wall boundary condition synthesized from a rescaled interior flow plane. The boundary condition is applied within the logarithmic layer, and mimics the linear dependence of the length scales of the velocity fluctuations with respect to the distance to the wall. The logarithmic profile of the mean streamwise velocity is recovered, but only if the virtual wall is shifted to a position different from the location assumed by the boundary condition. In those shifted coordinates, most flow properties are within 5–10 % of full simulations, including the Kármán constant, the fluctuation intensities, the energy budgets and the velocity spectra and correlations. On the other hand, buffer-layer structures do not form, including the near-wall energy maximum, and the velocity fluctuation profiles are logarithmic, strongly suggesting that the logarithmic layer is essentially independent of the near-wall dynamics. The same agreement holds when the technique is applied to large-eddy simulations. The different errors are analysed, especially the reasons for the shifted origin, and remedies are proposed. It is also shown that the length rescaling is required for a stationary logarithmic-like layer. Otherwise, the flow evolves into a state resembling uniformly sheared turbulence.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, 610-0394, Japan.

References

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Adrian, R. J., Mainhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.Google Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.Google Scholar
Bailey, S. C. C., Hultmark, M., Smits, A. J. & Schultz, M. P. 2008 Azimuthal structure of turbulence in high Reynolds number pipe flow. J. Fluid Mech. 615, 121138.Google Scholar
Bakken, O. M., Krogstad, P. A., Ashrafian, A & Andersson, H. I. 2005 Reynolds number effects in the outer layer of the turbulent flow in a channel with rough walls. Phys. Fluids 17, 065101.CrossRefGoogle Scholar
Bullock, K. J., Cooper, R. E. & Abernathy, F. H. 1978 Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow. J. Fluid Mech. 88, 585608.CrossRefGoogle Scholar
Buschmann, M. H. & Gad-el-Hak, M. 2005 New mixing-length approach for the mean velocity profile of turbulent boundary layers. Trans. ASME: J. Fluids Engng 127, 393396.Google Scholar
Catalano, P., Wang, M., Iaccarino, G. & Moin, P. 2003 Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. Intl J. Heat Fluid Flow 24, 453469.Google Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.Google Scholar
Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.CrossRefGoogle Scholar
Duncan, W. J., Thom, A. S. & Young, A. D. 1970 Mechanics of Fluids, 2nd edn. Arnold.Google Scholar
Flores, O. & Jiménez, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357376.CrossRefGoogle Scholar
Flores, O., Jiménez, J. & del Álamo, J. C. 2007 Vorticity organization in the outer layer of turbulent channels with disturbed walls. J. Fluid Mech. 591, 145154.Google Scholar
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.CrossRefGoogle Scholar
Hamba, F. 2003 A hybrid RANS/LES simulation of turbulent channel flow. Theor. Comput. Fluid Dyn. 16, 387403.Google Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of velocity fluctuations in turbulent channels up to $R{e}_{\tau } = 2003$ . Phys. Fluids 18, 011702.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20, 101511.Google Scholar
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108, 094501.CrossRefGoogle ScholarPubMed
Hunt, J. C. R., Moin, P., Moser, R. D. & Spalart, P. R. 1987 Self similarity of two point correlations in wall bounded turbulent flows. CTR Annu. Res. Briefs, 25–36.Google Scholar
Hunt, J. C. R. & Morrison, J. F. 2000 Eddy structure in turbulent boundary layers. Eur. J. Mech. (B-Fluids) 19, 673694.Google Scholar
Jiménez, J. 1998 The largest scales of turbulent wall flows. CTR Annu. Res. Briefs, 137–154.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.Google Scholar
Jiménez, J. 2007 Simulation of homogeneous and inhomogeneous shear turbulence. CTR Annu. Res. Briefs, 367–378.Google Scholar
Jiménez, J. 2012 Cascades in wall-bounded turbul.. Annu. Rev. Fluid Mech. 44, 2745.Google Scholar
Jiménez, J. & Hoyas, S. 2008 Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215236.Google Scholar
Jiménez, J. & Moser, R. D. 2000 LES: where are we and what can we expect?. AIAA J. 38, 605612.Google Scholar
Keating, A. & Piomelli, U. 2006 A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 7, N12.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motions in the outer layer. Phys. Fluids 11, 417422.Google Scholar
Kim, J., Moin, P & Moser, R. D. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Lozano-Durán, A., Flores, O. & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.Google Scholar
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Computat. Phys. 140, 233258.CrossRefGoogle Scholar
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.Google Scholar
Millikan, C. B. 1938 A critical discussion of turbulent flows in channels and circular tubes. In Proceedings of 5th International Conference on Applied Mechanics, pp. 386392. Wiley.Google Scholar
Mizuno, Y. & Jiménez, J. 2011 Mean velocity and length scales in the overlap region of wall-bounded turbulent flows. Phys. Fluids 23, 085112.CrossRefGoogle Scholar
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.Google Scholar
Morrison, W. R. B. & Kronauer, R. E. 1969 Structure similarity for fully developed turbulence in smooth tubes. J. Fluid Mech. 39, 117141.CrossRefGoogle Scholar
Nikitin, N. V., Nicoud, F., Easistho, B., Squires, K. D. & Spalart, P. R. 2000 An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 16291632.CrossRefGoogle Scholar
Oberlack, M. 2001 Unified approach for symmetries in plane parallel shear flows. J. Fluid Mech. 427, 299328.Google Scholar
Orlandi, P., Leonardi, S., Tuzi, R. & Antonia, R. A. 2003 Direct numerical simulations of turbulent channel flow with wall velocity disturbances. Phys. Fluids 15, 35873601.Google Scholar
Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. 2000 A note on the overlap region in turbulent boundary layers. Phys. Fluids 12, 14.Google Scholar
Pascarelli, A., Piomelli, U. & Candler, G. V. 2000 Multi-block large-eddy simulations of turbulent boundary layers. J. Comput. Phys. 157, 256279.Google Scholar
Perry, A. E. & Abell, C. J. 1975 Scaling laws for pipe-flow turbulence. J. Fluid Mech. 67, 257271.CrossRefGoogle Scholar
Perry, A. E. & Abell, C. J. 1977 Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech. 79, 785799.Google Scholar
Piomelli, U. 2008 Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44, 437446.CrossRefGoogle Scholar
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349374.CrossRefGoogle Scholar
Piomelli, U., Balaras, E., Pasinato, H., Squires, K. D. & Spalart, P. R. 2003 The inner/outer layer interface in large-eddy simulations with wall-layer models. Intl J. Heat Fluid Flow 24, 538550.Google Scholar
Podvin, B. & Fraigneau, Y. 2011 Synthetic wall boundary conditions for the direct numerical simulation of wall-bounded turbulence. J. Turbul. 12, 126.Google Scholar
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8, 31123127.CrossRefGoogle Scholar
Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 3366.Google Scholar
Saddoughi, S. G. & Veeravali, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds numbers. J. Fluid Mech. 268, 333372.CrossRefGoogle Scholar
Schumann, U. 1985 Algorithms for direct numerical simulation of shear-periodic turbulence. In Ninth International Conference on Numerical Methods in Fluid Dynamics, 218. Lecture Notes in Physics, pp. 492496 Springer.CrossRefGoogle Scholar
Simens, M. P., Jiménez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228, 42184231.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations I. The basic experiment. Mon. Weath. Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.Google Scholar
Spalart, P. R. 2009 Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181202.CrossRefGoogle Scholar
Spalart, P. R., Coleman, G. N. & Johnstone, R. 2008 Direct numerical simulation of the Ekman layer: a step in Reynolds number, and cautious support for a log law with a shifted origin. Phys. Fluids 20, 101507.Google Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT.Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Wang, M. & Moin, P. 2002 Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Phys. Fluids 14, 20432051.Google Scholar
Wosnik, M., Castillo, L. & George, W. K. 2000 A theory for turbulent pipe and channel flows. J. Fluid Mech. 421, 115145.Google Scholar
Zanoun, E. S., Durst, F. & Nagib, H. 2003 Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows. Phys. Fluids 15, 30793088.Google Scholar