Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T04:06:00.665Z Has data issue: false hasContentIssue false

Water drops bouncing off vertically vibrating textured surfaces

Published online by Cambridge University Press:  13 August 2019

Wei Wang
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, PR China
Chen Ji
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, PR China Institute of Marine Science and Technology, Shandong University, Qingdao 266237, PR China
Fangye Lin
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, PR China
Jun Zou*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, PR China
S. Dorbolo
Affiliation:
GRASP, Physics Department B5, University of Liège, B-4000 Liège, Belgium
*
Email address for correspondence: junzou@zju.edu.cn

Abstract

We investigate the conditions that determine the detachment of a water drop from different vibrating textured plates by using vertical vibrations. The plate surfaces were patterned by a lattice of pillars of different shapes with different geometrical arrangements. The acceleration threshold for the water droplet to bounce off the surfaces was measured as a function of the excitation frequency. In each case, the acceleration threshold presents a minimum at the natural frequency of the droplet. The minimum acceleration required for the take-off is larger for small droplets than for large droplets. Namely, one finds that the value of the threshold depends on the size of the droplet and on the maximum apparent contact area between the droplet and the substrate. The theoretical model takes into account the energy necessary to break the capillary bridges between the droplet and the pillars of the surface. This model captures the main ingredients explaining the drop size dependence of the acceleration threshold for the take-off.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329338.Google Scholar
Boreyko, J. B. & Chen, C. H. 2009 Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting. Phys. Rev. Lett. 103 (17), 174502.Google Scholar
Brunet, P., Eggers, J. & Deegan, R. D. 2007 Vibration-induced climbing of drops. Phys. Rev. Lett. 99 (14), 144501.Google Scholar
Butt, H. J., Gao, N., Papadopoulos, P., Steffen, W., Kappl, M. & Berger, R. 2017 Energy dissipation of moving drops on superhydrophobic and superoleophobic surfaces. Langmuir 33 (1), 107116.Google Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40 (0), 546551.Google Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.Google Scholar
Couder, Y., Fort, E., Gautier, C. H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.Google Scholar
Daniel, S., Chaudhury, M. K. & De Gennes, P. G. 2005 Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21 (9), 42404248.Google Scholar
de Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2008 Capillary and Wetting Phenomena. Springer.Google Scholar
Gilet, T., Terwagne, D., Vandewalle, N. & Dorbolo, S. 2008 Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett. 100 (16), 167802.Google Scholar
Hubert, M., Robert, D., Caps, H., Dorbolo, S. & Vandewalle, N. 2015 Resonant and antiresonant bouncing droplets. Phys. Rev. E 91 (2), 023017.Google Scholar
Khojasteh, D., Kazerooni, M., Salarian, S. & Kamali, R. 2016 Droplet impact on superhydrophobic surfaces: a review of recent developments. J. Indust. Engng Chem. 42, 114.Google Scholar
Kim, H. & Hee-Chang, L. 2015 Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface. J. Phys. Chem. B 119 (22), 67406746.Google Scholar
Mao, T., Kuhn, D. CS. & Tran, H. 1997 Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J. 43 (9), 21692179.Google Scholar
McBride, S. A., Dash, S. & Varanasi, K. K. 2018 Evaporative crystallization in drops on superhydrophobic and liquid-impregnated surfaces. Langmuir 34 (41), 1235012358.Google Scholar
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations. Eur. Phys. J. E 14 (4), 395404.Google Scholar
Olin, P., Lindstrom, S. B., Pettersson, T. & Wagberg, L. 2013 Water drop friction on superhydrophobic surfaces. Langmuir 29 (29), 90799089.Google Scholar
Quéré, D. & Reyssat, M. 2008 Non-adhesive lotus and other hydrophobic materials. Phil. Trans. R. Soc. Lond. A 366 (1870), 15391556.Google Scholar
Raufaste, C., Chagas, G. R., Darmanin, T., Claudet, C., Guittard, F. & Celestini, F. 2017 Superpropulsion of droplets and soft elastic solids. Phys. Rev. Lett. 119 (10), 108001.Google Scholar
Rayleigh, Lord 1879 VI. On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29 (196–199), 7197.Google Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Surface phenomena: contact time of a bouncing drop. Nature 417 (6891), 811.Google Scholar
Richard, D. & Quéré, D. 2000 Bouncing water drops. Europhys. Lett. 50 (6), 769.Google Scholar
de Ruiter, J., Lagraauw, R., van den Ende, D. & Mugele, F. 2014 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11 (1), 4853.Google Scholar
de Ruiter, J., Lagraauw, R., Mugele, F. & van den Ende, D. 2015 Bouncing on thin air: how squeeze forces in the air film during non-wetting droplet bouncing lead to momentum transfer and dissipation. J. Fluid Mech. 776, 531567.Google Scholar
Sharp, J. S. 2012 Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures. Soft Matt. 8 (2), 399407.Google Scholar
Sharp, J. S., Farmer, D. J. & Kelly, J. 2011 Contact angle dependence of the resonant frequency of sessile water droplets. Langmuir 27 (15), 93679371.Google Scholar
Smith, J. D., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R. E., McKinley, G. H. & Varanasi, K. K. 2013 Droplet mobility on lubricant-impregnated surfaces. Soft Matt. 9 (6), 17721780.Google Scholar
Wei, L., Zhihai, J., H., J., C., T. & Gang, W. 2014 Vibration-induced Wenzel–Cassie wetting transition on microstructured hydrophobic surfaces. Appl. Phys. Lett. 104 (18), 181601.Google Scholar
Zawala, J., Dorbolo, S., Terwagne, D., Vandewalle, N. & Malysa, K. 2011 Bouncing bubble on a liquid/gas interface resting or vibrating. Soft Matt. 7 (14), 67196726.Google Scholar