Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T02:32:23.414Z Has data issue: false hasContentIssue false

Water wave overwash of a step

Published online by Cambridge University Press:  29 January 2018

D. M. Skene*
Affiliation:
School of Mathematical Sciences, University of Adelaide, SA 5005, Australia
L. G. Bennetts
Affiliation:
School of Mathematical Sciences, University of Adelaide, SA 5005, Australia
M. Wright
Affiliation:
Department of Naval Architecture and Marine Engineering, University of Michigan, MI 48109, USA
M. H. Meylan
Affiliation:
School of Mathematical and Physical Sciences, University of Newcastle, NSW 2308, Australia
K. J. Maki
Affiliation:
Department of Naval Architecture and Marine Engineering, University of Michigan, MI 48109, USA
*
Email address for correspondence: david.skene@adelaide.edu.au

Abstract

Water wave overwash of a step by small steepness, regular incident waves is analysed using a computational fluid dynamics (CFD) model and a mathematical model, in two spatial dimensions. The CFD model is based on the two-phase, incompressible Navier–Stokes equations, and the mathematical model is based on the coupled potential-flow and nonlinear shallow-water theories. The CFD model is shown to predict vortices, breaking and overturning in the region where overwash is generated, and that the overwash develops into fast-travelling bores. The mathematical model is shown to predict bore heights and velocities that agree with the CFD model, despite neglecting the complicated dynamics where the overwash is generated. Evidence is provided to explain the agreement in terms of the underlying agreement of mass and energy fluxes.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, W., Zhang, T. & McGovern, D. J. 2017 Response of small sea ice floes in regular waves: a comparison of numerical and experimental results. Ocean Engng 129, 495506.Google Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics, 2nd edn. Cambridge University Press.Google Scholar
Bennetts, L. G., Alberello, A., Meylan, M. H., Cavaliere, C., Babanin, A. V. & Toffoli, A. 2015 An idealised experimental model of ocean surface wave transmission by an ice floe. Ocean Model. 96, 8592.CrossRefGoogle Scholar
Bennetts, L. G. & Squire, V. A. 2012 On the calculation of an attenuation coefficient for transects of ice-covered ocean. Proc. R. Soc. Lond. A 468, 136162.Google Scholar
Bennetts, L. G. & Williams, T. D. 2015 Water wave transmission by an array of floating disks. Proc. R. Soc. Lond. A 471, 2014069.Google Scholar
Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79 (3), 036306.Google Scholar
Billingham, J. & King, A. C. 2000 Wave Motion. Cambridge University Press.Google Scholar
Buchner, B.2002 Green water on ship-type offshore structures. PhD thesis, Delft University of Technology.Google Scholar
Chanson, H. 2009 Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. Eur. J. Mech. (B/Fluids) 28 (2), 191210.Google Scholar
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Math. Comput. 67 (221), 7385.CrossRefGoogle Scholar
Greco, M.2001 A two-dimensional study of green-water loading. PhD thesis, Norwegian University of Science and Technology.Google Scholar
Greco, M., Colicchio, G. & Faltinsen, O. M. 2007 Shipping of water on a two-dimensional structure. Part 2. J. Fluid Mech. 581, 371399.CrossRefGoogle Scholar
Greco, M., Faltinsen, O. M. & Landrini, M. 2005 Shipping of water on a two-dimensional structure. J. Fluid Mech. 525, 309332.Google Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2013a Realistic wave generation and active wave absorption for Navier–Stokes models: application to OpenFOAM® . Coast. Engng 71, 102118.Google Scholar
Higuera, P., Lara, J. L. & Losada, I. J. 2013b Simulating coastal engineering processes with OpenFOAM® . Coast. Engng 71, 119134.CrossRefGoogle Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid method for the dynamic of free boundaries. J. Comput. Phys. 39, 323345.Google Scholar
Jacobsen, N. G., Fuhrman, D. R. & Fredsøe, J. 2012 A wave generation toolbox for the open-source CFD library: OpenFoam® . Intl J. Numer. Meth. Fluids 70 (9), 10731088.CrossRefGoogle Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160 (1), 241282.Google Scholar
McGovern, D. J. & Bai, W. 2014 Experimental study on kinematics of sea ice floes in regular waves. Cold Reg. Sci. Technol. 103, 1530.Google Scholar
Meylan, M. H., Bennetts, L. G., Cavaliere, C., Alberello, A. & Toffoli, A. 2015 Experimental and theoretical models of wave-induced flexure of a sea ice floe. Phys. Fluids 27 (4), 041704.Google Scholar
Mills, A. F. 1999 Heat Transfer, 2nd edn. Prentice-Hall.Google Scholar
Mizoguchi, S. 1988 Analysis of shipping water with the experiments and the numerical calculations. J. Soc. Nat. Nav. Archit. Japan 27, 8391.Google Scholar
Montiel, F., Bennetts, L. G., Squire, V. A., Bonnefoy, F. & Ferrant, P. 2013a Hydroelastic response of floating elastic disks to regular waves. Part 2. Modal analysis. J. Fluid Mech. 723, 629652.Google Scholar
Montiel, F., Bonnefoy, F., Ferrant, P., Bennetts, L. G., Squire, V. A. & Marsault, P. 2013b Hydroelastic response of floating elastic disks to regular waves. Part 1. Wave tank experiments. J. Fluid Mech. 723, 604628.CrossRefGoogle Scholar
Nelli, F., Bennetts, L. G., Skene, D. M., Monty, J. P., Lee, J. H., Meylan, M. H. & Toffoli, A. 2017 Reflection and transmission of regular water waves by a thin, floating plate. Wave Motion 70, 209221.Google Scholar
Nielsen, K. B. & Mayer, S. 2004 Numerical prediction of green water incidents. Ocean Engng 31 (3), 363399.Google Scholar
Paulsen, B. T., Bredmose, H., Bingham, H. B. & Jacobsen, N. G. 2014 Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth. J. Fluid Mech. 755, 134.Google Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory, 9th edn. Springer.Google Scholar
Skene, D. M., Bennetts, L. G., Meylan, M. H. & Toffoli, A. 2015 Modelling water wave overwash of a thin floating plate. J. Fluid Mech. 777, R3.Google Scholar
Sree, D. K. K., Law, A. W.-K. & Shen, H. H. 2017 An experimental study on the interactions between surface waves and floating viscoelastic covers. Wave Motion 70, 195208.Google Scholar
Toffoli, A., Bennetts, L. G., Meylan, M. H., Cavaliere, C., Alberello, A., Elsnab, J. & Monty, J. P. 2015 Sea ice floes dissipate the energy of steep ocean waves. Geophys. Res. Lett. 42, 18.Google Scholar
Vreugdenhil, C. B. 1994 Numerical Methods for Shallow-Water Flow. Kluwer Academic.Google Scholar
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.Google Scholar
Whitham, G. B. 1962 Mass, momentum and energy flux in water waves. J. Fluid Mech. 12 (1), 135147.Google Scholar
Yiew, L. J., Bennetts, L. G., Meylan, M. H., French, B. J. & Thomas, G. A. 2016 Hydrodynamic responses of a thin floating disk to regular waves. Ocean Model. 97, 5264.Google Scholar