Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T01:27:51.453Z Has data issue: false hasContentIssue false

The wave system attached to a finite slender body in a supersonic relaxing gas stream

Published online by Cambridge University Press:  12 April 2006

Y. L. Sinai
Affiliation:
Department of Aerodynamics, Cranfield Institute of Technology, Bedford MK43 0AL, England Present address: Department of Applied Mathematical Studies, University of Leeds, England.
J. F. Clarke
Affiliation:
Department of Aerodynamics, Cranfield Institute of Technology, Bedford MK43 0AL, England

Abstract

The results of a companion paper are extended to encompass the flow about smooth, but otherwise general body shapes. The wave behaviour depends on three important parameters, namely the body thickness ratio ε, the quantity δ, which is proportional to the difference between the frozen and equilibrium sound speeds, and the ratio λ of a relaxation time to a characteristic flow time. Both analytical and numerical solutions have been obtained; account is taken of nonlinearity for complete spectra of the three parameters, enabling an assessment to be made of the evolution of the wave forms for a host of situations. In particular, it is possible to predict the structures of the shock waves in various regions, and it transpires that under certain conditions vibrational relaxation can overwhelm other dissipative effects.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, W. F. 1965 Nonlinear Partial Differential Equations in Engineering, vol. 1. Academic Press.
Blythe, P. A. 1969 J. Fluid Mech. 37, 31.
Chong, T. H. & Sirovich, L. 1970 Phys. Fluids 13, 1990.
Chong, T. H. & Sirovich, L. 1973 J. Fluid Mech. 58, 53.
Chou, D. C. 1972 Astron. Acta 17, 625.
Chou, D. C. & Chu, B.-T. 1971 J. Fluid Mech. 50, 355.
Clarke, J. F. 1961 J. Fluid Mech. 11, 577.
Clarke, J. F. 1965 Cranfield Inst. Tech. Aero. Rep. CoA 182.
Clarke, J. F. & Mcchesney, M. 1976 The Dynamics of Relaxing Gases. Butterworths.
Clarke, J. F. & Sinai, Y. L. 1977 J. Fluid Mech. 79, 499.
Cole, J. D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell.
Hayes, W. D. & Probstein, R. F. 1966 Hypersonic Flow Theory. Part I. Academic Press.
Hodgson, J. P. 1973 J. Fluid Mech. 58, 187.
Hodgson, J. P. & Johannesen, N. H. 1971 J. Fluid Mech. 50, 17.
Jones, J. G. 1964 J. Fluid Mech. 19, 81.
Kraiko, A. N. 1966 Prikl. Mat. Mekh. 30, 793.
Landahl, M. & Lofgren, P. 1973 N.A.S.A. Contractor Rep. CR-2339.
Leibovich, S. & Seebass, A. R. 1974 Nonlinear Waves. Cornell University Press.
Li, T. Y. & Wang, K. C. 1962 Rensselaer Polytech. Inst. Aero. Engng Dept. Tech. Rep. TR-6201.
Lick, W. 1967 Adv. Appl. Mech. 10, 1.
Liepmann, H. W. & Roshko, A. 1957 Elements of Gasdynamics. Wiley.
Lighthill, M. J. 1956 Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies). Cambridge University Press.
Lilley, G. M. 1965 The structure of shock waves at large distances from bodies travelling at high speeds. Proc. 5th Cong. Int. d'Acoustique Liege (ed. D. E. Commings), vol. 2, pp. 109162.
Murray, J. D. 1968 J. Math. & Phys. 47, 111.
Ockendon, H. & Spence, D. A. 1969 J. Fluid Mech. 39, 329.
Parker, D. F. 1975 Contribution to 17th Brit. Theor. Mech. Coll.
Pierce, A. D. & Maglieri, D. J. 1972 J. Acoust. Soc. Am. 51, 702.
Rudenko, O. V., Soluyan, S. I. & Khokhlov, R. V. 1974 Problems of the theory of nonlinear acoustics. Proc. 1973 Symp. Finite-Amplitude Wave Effects in Fluids (ed. L. Bjørnø), IPC Science & Tech., or Soviet Physics-Acoustics, 20, 271.
Ryzhov, O. S. 1971 Prikl. Mat. Mekh. 35, 972.
Sanchez-Palencia-Hubert, J. 1976 Int. J. Engng Sci. 14, 567.
Sedney, R. & Gerber, N. 1963 A.I.A.A. J. 1, 2482.
Sinai, Y. L. 1975 Ph.D. thesis, Cranfield Institute of Technology.
Sinai, Y. L. 1976 Phys. Fluids 19, 1059.
Sirovich, L. 1968 Phys. Fluids 11, 1424.
Stephenson, J. D. 1960 N.A.S.A. Tech. Note D-327.
Sutherland, L. C. 1975 Review of experimental data in support of a proposed new method for computing atmospheric absorption losses. Wyle Lab. Transportation DOT–TST–75–87.
Tkalenko, R. A. 1975 Prikl. Mat. Mekh. 39, 647.
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics, annotated edition. Parabolic Press.
Varley, E. & Rogers, T. G. 1967 Proc. Roy. Soc. A 296, 498.
Wegener, P. P., Chu, B-T. & Klikoff, W. A. 1965 J. Fluid Mech. 23, 787.
Whitham, G. B. 1952 Comm. Pure Appl. Math. 5, 301.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.