No CrossRef data available.
Article contents
Wavelet analysis of the coupling between turbulence, particles and electrostatics in dust storms
Published online by Cambridge University Press: 13 March 2025
Abstract
Dust storms are a unique form of high-Reynolds-number particle-laden turbulence associated with intense electrical activity. Using a wavelet-based analysis method on field measurement data, Zhang et al. (2023 J. Fluid Mech. 963, A15) found that wind velocity intermittency intensifies during dust storms, but it is weaker than both dust concentration and electric field. However, the linear and nonlinear multifield coupling characteristics, which significantly influence particle transport and turbulence modulation, remain poorly understood. To address this issue, we obtained high-fidelity datasets of wind velocity, dust concentration, and electric field at the Qingtu Lake Observation Array. By extending the wavelet-based data analysis method, we investigated localised linear and quadratic nonlinear coupling characteristics in strong turbulence–particle–electrostatics coupling regimes. Our findings reveal that linear coupling behaviour is largely dominated by the multifield intermittent components. At small scales, due to very high intermittency, no strong phase synchronisation can be formed, and the interphase linear coupling is weak and notably intermittent. At larger scales, however, perfect phase synchronisation emerges, and dust concentration and electric field exhibit strong, non-intermittent linear coupling, suggesting that large-scale coherent structures play a dominant role in driving the coupling. Importantly, the multifield spectra show well-developed $-1$ and
$-5/3$ power-law regions, but the spectral breakpoints for dust concentration and electric field are two decades lower than that for streamwise wind velocity. This difference is due to the broader range and stronger intensity of quadratic nonlinear coupling in dust concentration and electric field, which leads to the broadening of Kolmogorov’s
$-5/3$ power-law spectrum.
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press