Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T23:08:21.525Z Has data issue: false hasContentIssue false

Waves on a vortex: rays, rings and resonances

Published online by Cambridge University Press:  22 October 2018

Theo Torres*
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, UK
Antonin Coutant
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, UK
Sam Dolan
Affiliation:
Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
Silke Weinfurtner
Affiliation:
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, UK

Abstract

We study the scattering of surface water waves with irrotational draining vortices. At small depth, this system is a mathematical analogue of a rotating black hole and can be used to mimic some of its peculiar phenomena. Using ray-tracing methods, we exhibit the existence of unstable orbits around vortices at arbitrary depth. These orbits are the analogue of the light rings of a black hole. We show that these orbits come in pairs, one co-rotating and one counter-rotating, at an orbital radius that varies with the frequency. We derived an explicit formula for this radius in the deep-water regime. Our method is validated by comparison with recent experimental data from a wavetank experiment. We finally argue that these rings will generate a discrete set of damped resonances that we characterize and that could possibly be observed in future experiments.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P. et al. 2016 Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102.Google Scholar
Acheson, D. J. 1976 On over-reflexion. J. Fluid Mech. 77 (3), 433472.Google Scholar
Barcelo, C., Liberati, S. & Visser, M. 2005 Analogue gravity. Living Rev. Rel. 8, 12 (revised as Living Rev. Rel. 14 (3), (2011)).Google Scholar
Berry, M. V., Chambers, R. G., Large, M. D., Upstill, C. & Walmsley, J. C. 1980 Wavefront dislocations in the Aharonov–Bohm effect and its water wave analogue. Eur. J. Phys. 1 (3), 154162.Google Scholar
Berti, E., Cardoso, V. & Starinets, A. O. 2009 Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001.Google Scholar
Brito, R., Cardoso, V. & Pani, P. 2015 Superradiance, Lecture Notes in Physics, 906, pp. 1237. Springer.Google Scholar
Bühler, O. 2014 Waves and Mean Flows. Cambridge University Press.Google Scholar
Bühler, O. & McIntyre, M. 2005 Wave capture and wave vortex duality. J. Fluid Mech. 534, 6795.Google Scholar
Cardoso, V., Miranda, A. S., Berti, E., Witek, H. & Zanchin, V. T. 2009 Geodesic stability, Lyapunov exponents, and quasinormal modes. Phys. Rev. D 79, 064016.Google Scholar
Cardoso, V. & Pani, P. 2017a Tests for the existence of black holes through gravitational wave echoes. Nat. Astron. 1 (9), 586591.Google Scholar
Cardoso, V. & Pani, P. 2017b Tests for the existence of black holes through gravitational wave echoes. Nat. Astron. 1, 586591.Google Scholar
Cerda, E. & Lund, F. 1993 Interaction of surface waves with vorticity in shallow water. Phys. Rev. Lett. 70 (25), 3896.Google Scholar
Coste, C. & Lund, F. 1999 Scattering of dislocated wave fronts by vertical vorticity and the Aharonov–Bohm effect. II. Dispersive waves. Phys. Rev. E 60 (4), 4917.Google Scholar
Coste, C., Lund, F. & Umeki, M. 1999 Scattering of dislocated wave fronts by vertical vorticity and the Aharonov–Bohm effect. I. Shallow water. Phys. Rev. E 60 (4), 4908.Google Scholar
Decanini, Y., Esposito-Farese, G. & Folacci, A. 2011 Universality of high-energy absorption cross sections for black holes. Phys. Rev. D 83, 044032.Google Scholar
Dempsey, D.2017 Wave propagation on black hole spacetimes. PhD thesis, School of Mathematics and Statistics, University of Sheffield.Google Scholar
Dempsey, D. & Dolan, S. R. 2016 Waves and null congruences in a draining bathtub. Intl J. Mod. Phys. D 25 (9), 1641004.Google Scholar
Dolan, S. R. 2010 Quasinormal mode spectrum of a Kerr black hole in the eikonal limit. Phys. Rev. D 82, 104003.Google Scholar
Dolan, S. R., Oliveira, E. S. & Crispino, L. C. B. 2011 Aharonov–Bohm effect in a draining bathtub vortex. Phys. Lett. B 701 (4), 485489.Google Scholar
Dolan, S. R., Oliveira, L. A. & Crispino, L. C. B. 2012 Resonances of a rotating black hole analogue. Phys. Rev. D 85, 044031.Google Scholar
Dolan, S. R. & Stratton, T. 2017 Rainbow scattering in the gravitational field of a compact object. Phys. Rev. D 95 (12), 124055.Google Scholar
Euvé, L. P., Michel, F., Parentani, R., Philbin, T. G. & Rousseaux, G. 2016 Observation of noise correlated by the Hawking effect in a water tank. Phys. Rev. Lett. 117 (12), 121301.Google Scholar
Fabrikant, A. L. & Raevsky, M. A. 1994 The influence of drift flow turbulence on surface gravity wave propagation. J. Fluid Mech. 262, 141156.Google Scholar
Fetter, A. L. 1964 Scattering of sound by a classical vortex. Phys. Rev. 136 (6A), A1488.Google Scholar
Goebel, C. J. 1972 Comments on the ‘vibrations’ of a black hole. Astrophys. J. 172, L95.Google Scholar
Haller, G. & Beron-Vera, F. J. 2013 Coherent Lagrangian vortices: the black holes of turbulence. J. Fluid Mech. 731, R4.Google Scholar
Hod, S. 2014 Onset of superradiant instabilities in the composed Kerr-black-hole-mirror bomb. Phys. Lett. B 736, 398402.Google Scholar
Hunt, J. N. 1964 The viscous damping of gravity waves in shallow water. La Houille Blanche 6, 685691.Google Scholar
Jacobson, T. 2013 Black holes and Hawking radiation in spacetime and its analogues. Lecture Notes in Physics, 870, pp. 129. Springer.Google Scholar
Jansson, T. R. N., Haspang, M. P., Jensen, K. H., Hersen, P. & Bohr, T. 2006 Polygons on a rotating fluid surface. Phys. Rev. Lett. 96 (17), 174502.Google Scholar
Kokkotas, K. D. & Schmidt, B. G. 1999 Quasinormal modes of stars and black holes. Living Rev. Rel. 2, 2.Google Scholar
Konoplya, R. A. & Stuchlík, Z. 2017 Are eikonal quasinormal modes linked to the unstable circular null geodesics? Phys. Lett. B 771, 597602.Google Scholar
Kopiev, V. F. & Belyaev, I. V. 2010 On long-wave sound scattering by a Rankine vortex: non-resonant and resonant cases. J. Sound Vib. 329 (9), 14091421.Google Scholar
Lund, F. & Rojas, C. 1989 Ultrasound as a probe of turbulence. Physica D 37 (1–3), 508514.Google Scholar
Macedo, C. F. B., Leite, L. C. S., Oliveira, E. S., Dolan, S. R. & Crispino, L. C. B. 2013 Absorption of planar massless scalar waves by Kerr black holes. Phys. Rev. D 88 (6), 064033.Google Scholar
Matzner, R. A., DeWitte-Morette, C., Nelson, B. & Zhang, T.-R. 1985 Glory scattering by black holes. Phys. Rev. D 31 (8), 1869.Google Scholar
Milewski, P. A. & Keller, J. B. 1996 Three-dimensional water waves. Stud. Appl. Maths 97 (2), 149166.Google Scholar
Moreira, R. M. & Peregrine, D. H. 2012 Nonlinear interactions between deep-water waves and currents. J. Fluid Mech. 691, 125.Google Scholar
Mougel, J., Fabre, D., Lacaze, L. & Bohr, T. 2017 On the instabilities of a potential vortex with a free surface. J. Fluid Mech. 824, 230264.Google Scholar
Nazarenko, S. V. 1994 Absorption of sound by vortex filaments. Phys. Rev. Lett. 73 (13), 1793.Google Scholar
Nazarenko, S. V., Zabusky, N. J. & Scheidegger, T. 1995 Nonlinear sound–vortex interactions in an inviscid isentropic fluid: a two-fluid model. Phys. Fluids 7 (10), 24072419.Google Scholar
Oliveira, L. A., Cardoso, V. & Crispino, L. C. B. 2014 Ergoregion instability: the hydrodynamic vortex. Phys. Rev. D 89 (12), 124008.Google Scholar
Pagneux, V. & Maurel, A. 2001 Irregular scattering of acoustic rays by vortices. Phys. Rev. Lett. 86 (7), 1199.Google Scholar
Przadka, A., Cabane, B., Pagneux, V., Maurel, A. & Petitjeans, P. 2012 Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface? Exp. Fluids 52 (2), 519527.Google Scholar
Robertson, S. & Rousseaux, G.2017 Viscous dissipation of surface waves and its relevance to analogue gravity experiments, arXiv:1706.05255.Google Scholar
Schutz, B. F. & Will, C. M. 1985 Black hole normal modes – a semianalytic approach. Astrophys. J. 291, L33L36.Google Scholar
Schützhold, R. & Unruh, W. G. 2002 Gravity wave analogues of black holes. Phys. Rev. D 66, 044019.Google Scholar
Sonin, E. 2002 Magnus force and Aharonov–Bohm effect in superfluids. In Vortices in Unconventional Superconductors and Superfluids, pp. 119145. Springer.Google Scholar
Steinhauer, J. 2016 Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys. 12, 959.Google Scholar
Stokes, T. E., Hocking, G. C. & Forbes, L. K. 2008 Unsteady free surface flow induced by a line sink in a fluid of finite depth. Comput. Fluids 37 (3), 236249.Google Scholar
Tophøj, L., Mougel, J., Bohr, T. & Fabre, D. 2013 Rotating polygon instability of a swirling free surface flow. Phys. Rev. Lett. 110 (19), 194502.Google Scholar
Torres, T., Patrick, S., Coutant, A., Richartz, M., Tedford, E. W. & Weinfurtner, S. 2017 Observation of superradiance in a vortex flow. Nat. Phys. 13, 833836.Google Scholar
Umeki, M. & Lund, F. 1997 Spirals and dislocations in wave–vortex systems. Fluid Dyn. Res. 21 (3), 201210.Google Scholar
Unruh, W. G. 1981 Experimental black hole evaporation. Phys. Rev. Lett. 46, 13511353.Google Scholar
Vanden-Broeck, J.-M. & Keller, J. B. 1987 Free surface flow due to a sink. J. Fluid Mech. 175, 109117.Google Scholar
Vatistas, G. H., Wang, J. & Lin, S. 1994 Recent findings on Kelvin’s equilibria. Acta Mechanica 103 (1–4), 89102.Google Scholar
Visser, M. 1998 Acoustic black holes: horizons, ergospheres, and Hawking radiation. Class. Quant. Grav. 15, 17671791.Google Scholar
Vivanco, F., Caballero, L., Melo, F. & Lund, F. 2000 Surface waves scattering by a vertical vortex: a progress report. In Instabilities and Nonequilibrium Structures VI, pp. 219231. Springer.Google Scholar
Vivanco, F., Melo, F., Coste, C. & Lund, F. 1999 Surface wave scattering by a vertical vortex and the symmetry of the Aharonov–Bohm wave function. Phys. Rev. Lett. 83 (10), 1966.Google Scholar
Vocke, D., Maitland, C., Prain, A., Biancalana, F., Marino, F. & Faccio, D.2017 Rotating black hole geometries in a two-dimensional photon superfluid, arXiv:1709.04293.Google Scholar
Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. 2011 Measurement of stimulated hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302.Google Scholar
Yang, H., Nichols, D. A., Zhang, F., Zimmerman, A., Zhang, Z. & Chen, Y. 2012 Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation. Phys. Rev. D 86, 104006.Google Scholar