Article contents
Weak turbulence theory for rotating magnetohydrodynamics and planetary flows
Published online by Cambridge University Press: 19 September 2014
Abstract
A weak turbulence theory is derived for magnetohydrodynamics (MHD) under rapid rotation and in the presence of a uniform large-scale magnetic field which is associated with a constant Alfvén velocity $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\boldsymbol {b}}_{{0}}$. The angular velocity ${\boldsymbol{\Omega}}_{{0}}$ is assumed to be uniform and parallel to ${\boldsymbol {b}}_{{0}}$. Such a system exhibits left and right circularly polarized waves which can be obtained by introducing the magneto-inertial length $d \equiv b_0/\varOmega _0$. In the large-scale limit ($kd \to 0$, with $k$ being the wavenumber) the left- and right-handed waves tend to the inertial and magnetostrophic waves, respectively, whereas in the small-scale limit ($kd \to + \infty $) pure Alfvén waves are recovered. By using a complex helicity decomposition, the asymptotic weak turbulence equations are derived which describe the long-time behaviour of weakly dispersive interacting waves via three-wave interaction processes. It is shown that the nonlinear dynamics is mainly anisotropic, with a stronger transfer perpendicular than parallel to the rotation axis. The general theory may converge to pure weak inertial/magnetostrophic or Alfvén wave turbulence when the large- or small-scale limits are taken, respectively. Inertial wave turbulence is asymptotically dominated by the kinetic energy/helicity, whereas the magnetostrophic wave turbulence is dominated by the magnetic energy/helicity. For both regimes, families of exact solutions are found for the spectra, which do not correspond necessarily to a maximal helicity state. It is shown that the hybrid helicity exhibits a cascade whose direction may vary according to the scale $k_f$ at which the helicity flux is injected, with an inverse cascade if $k_fd < 1$ and a direct cascade otherwise. The theory is relevant to the magnetostrophic dynamo, whose main applications are the Earth and the giant planets, such as Jupiter and Saturn, for which a small (${\sim }10^{-6}$) Rossby number is expected.
- Type
- Papers
- Information
- Copyright
- © 2014 Cambridge University Press
References
- 24
- Cited by