Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:22:21.682Z Has data issue: false hasContentIssue false

Western boundary layer nonlinear control of the oceanic gyres

Published online by Cambridge University Press:  17 May 2021

Ryosuke Kurashina*
Affiliation:
Department of Mathematics, Imperial College London, LondonSW7 2AZ, UK
Pavel Berloff
Affiliation:
Department of Mathematics, Imperial College London, LondonSW7 2AZ, UK Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow119333, Russia
Igor Shevchenko
Affiliation:
Department of Mathematics, Imperial College London, LondonSW7 2AZ, UK
*
Email address for correspondence: ryosuke.kurashina14@imperial.ac.uk

Abstract

This study examines the influence of flow nonlinearity in western boundary layers upon the turbulent wind-driven ocean gyres. Our analysis involves comparisons between large-scale circulation properties of the linear and nonlinear states, as well as a Lagrangian particle analysis of relevant flow features. We find that the so-called counter-rotating gyre anomalies, which are nonlinear circulation features embedded in the gyres, are consistent in shape with the linear, weakened, wind-curl response created by the geometric wind effect. However, the linear response is far too weak without considering nonlinear effects. Within the western boundary layer lobe of these features, the nonlinear boundary layer has a pivotal impact upon the global circulation. Effects of potential vorticity advection inhibit viscous relative vorticity fluxes through the western boundary. This creates a significant potential vorticity imbalance between the gyres. Consequently, this generates an accumulation of enstrophy downstream in the inertial recirculation zones, which in turn supports the eastward jet. However, within the ocean basin, the growing imbalance is eventually rectified by inter-gyre potential vorticity exchanges owing to nonlinear fluxes. The Lagrangian particle analysis reveals the inter-gyre exchange mechanism, where particles seeded within the western boundary layer migrate between the gyres and weaken the eastward jet extension.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berloff, P. 2005 On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans 38, 123146.CrossRefGoogle Scholar
Berloff, P. 2015 Dynamically consistent parameterization of mesoscale eddies. Part I: simple model. Ocean Model. 85, 119.CrossRefGoogle Scholar
Berloff, P. 2016 Dynamically consistent parameterization of mesoscale eddies. Part II: eddy fluxes and diffusivity from transient impulses. Fluids 1 (3), 22.CrossRefGoogle Scholar
Berloff, P., Dewar, W., Kravtsov, S. & McWilliams, J. 2007 a Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr. 37, 11031121.CrossRefGoogle Scholar
Berloff, P., Hogg, A. & Dewar, W. 2007 b The turbulent oscillator: a mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr. 37, 23632386.CrossRefGoogle Scholar
Berloff, P. & McWilliams, J. 1999 a Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr. 29, 19251948.2.0.CO;2>CrossRefGoogle Scholar
Berloff, P. & McWilliams, J. 1999 b Quasigeostrophic dynamics of the western boundary current. J. Phys. Oceanogr. 29, 26072634.2.0.CO;2>CrossRefGoogle Scholar
Berloff, P., McWilliams, J. & Bracco, A. 2002 Material transport in oceanic gyres. Part I: phenomenology. J. Phys. Oceanogr. 32, 764796.2.0.CO;2>CrossRefGoogle Scholar
Böning, C 1986 On the influence of frictional parameterization in wind-driven ocean circulation models. Dyn. Atmos. Oceans 10, 6392.CrossRefGoogle Scholar
Cessi, P., Ierley, G. & Young, W. 1987 A model of the inertial recirculation driven by potential vorticity anomalies. J. Phys. Oceanogr. 17, 16401652.2.0.CO;2>CrossRefGoogle Scholar
Chelton, D., Esbensen, S., Schlax, M., Thum, N., Freilich, M., Wentz, F., Gentemann, C., Mcphaden, M. & Schopf, P. 2001 Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Clim. 14, 14791498.2.0.CO;2>CrossRefGoogle Scholar
Chelton, D., Schlax, M., Freilich, M. & Milliff, R. 2004 Satellite measurements reveal persistent small-scale features in ocean winds. Science 303, 978983.CrossRefGoogle ScholarPubMed
Coulliette, C. & Wiggins, S. 2001 Intergyre transport in a wind-driven, quasigeostrophic double gyre: an application of lobe dynamics nonlinear processes in geophysics intergyre transport in a wind-driven, quasigeostrophic double gyre: an application of lobe dynamics. Eur. Geosci. Union (EGU) 8, 6994.Google Scholar
Deremble, B., Hogg, A., Berloff, P. & Dewar, W. 2011 On the application of no-slip lateral boundary conditions to ‘coarsely’ resolved ocean models. Ocean Model. 39, 411415.CrossRefGoogle Scholar
Fairall, C., Bradley, E., Hare, J., Grachev, A. & Edson, J. 2003 Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Phys. Oceanogr. 16, 571591.Google Scholar
Fofonoff, N. 1954 Steady flow in a frictionless homogeneous ocean. J. Mar. Res. 13, 254262.Google Scholar
Fox-Kemper, B 2005 Reevaluating the roles of eddies in multiple barotropic wind-driven gyres. J. Phys. Oceanogr. 35, 12631278.CrossRefGoogle Scholar
Haidvogel, D. & Holland, W. 1978 The stability of ocean currents in eddy-resolving general circulation models. J. Phys. Oceanogr. 8, 393413.2.0.CO;2>CrossRefGoogle Scholar
Haidvogel, D., McWilliams, J. & Gent, P. 1992 Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J. Phys. Oceanogr. 22, 882902.2.0.CO;2>CrossRefGoogle Scholar
Harrison, D. & Stalos, S. 1982 On the wind-driven ocean circulation. J. Mar. Res. 40, 773791.Google Scholar
Hogg, A., Dewar, W., Killworth, P. & Blundell, J. 2003 A quasi-geostrophic coupled model (q-gcm). Mon. Weath. Rev. 131, 22612277.2.0.CO;2>CrossRefGoogle Scholar
Hogg, A., Dewar, W., Killworth, P. & Blundell, J. 2006 Decadal variability of the midlatitude climate system driven by the ocean circulation. J. Clim. 19, 11491166.CrossRefGoogle Scholar
Holland, W. 1978 The role of mesoscale eddies in the general circulation of the ocean – numerical experiments using a wind-driven quasi-geostrophic model. Am. Meteorol. Soc. 8, 363392.Google Scholar
Holland, W. & Rhines, P. 1980 An example of eddy-induced ocean circulation. J. Phys. Oceanogr. 10, 10101031.2.0.CO;2>CrossRefGoogle Scholar
Jayne, S., Hogg, N. & Malanotte-Rizzoli, P. 1996 Recirculation zones forced by a beta-plane jet. J. Phys. Oceanogr. 26, 492504.2.0.CO;2>CrossRefGoogle Scholar
Karabasov, S., Berloff, P. & Goloviznin, V. 2009 Cabaret in the ocean gyres. Ocean Model. 30, 155168.CrossRefGoogle Scholar
Kiss, A. 2002 Potential vorticity ‘crises’, adverse pressure gradients, and western boundary current separation. J. Mar. Res. 60, 779803.CrossRefGoogle Scholar
Kiss, A. 2010 Dynamics of separating western boundary currents in ocean models. IOP Conf. Ser.: Earth Environ. Sci. 11, 012034.CrossRefGoogle Scholar
Lozier, M. & Riser, S. 1989 Potential vorticity dynamics of boundary currents in a quasi-geostrophic ocean. J. Phys. Oceanogr. 19, 13731396.2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 1, 427441.CrossRefGoogle Scholar
Moro, B. 1988 On the nonlinear Munk model. I. Steady flows. Dyn. Atmos. Oceans 12, 259287.CrossRefGoogle Scholar
Moro, B. 1990 On the nonlinear Munk model. II: stability. Dyn. Atmos. Oceans 14, 203227.CrossRefGoogle Scholar
Munk, W. 1949 On the wind-driven ocean circulation. J. Meteorol. 7, 7993.Google Scholar
Nakano, H., Tsujino, H. & Furue, R. 2008 The Kuroshio current system as a jet and twin ‘relative’ recirculation gyres embedded in the Sverdrup circulation. Dyn. Atmos. Oceans 45, 135164.CrossRefGoogle Scholar
Pedlosky, J 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Rhines, P. & Holland, W. 1979 A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans 3, 289325.CrossRefGoogle Scholar
Rhines, P. & Schopp, R. 1991 The wind-driven circulation: quasi-geostrophic simulations and theory for nonsymmetric winds. J. Phys. Oceanogr. 21, 14381469.2.0.CO;2>CrossRefGoogle Scholar
Rhines, P. & Young, W. 1982 Homogenization of potential vorticity in planetary gyres. J. Fluid Mech. 122, 347367.CrossRefGoogle Scholar
Schoonover, J., Dewar, W., Wienders, N. & Deremble, B. 2017 Local sensitivities of the gulf stream separation. J. Phys. Oceanogr. 47, 353373.CrossRefGoogle Scholar
Shevchenko, I. & Berloff, P. 2016 Eddy backscatter and counter-rotating gyre anomalies of midlatitude ocean dynamics. Fluids 1 (3), 28.CrossRefGoogle Scholar
Spall, M. 2014 Some influences of remote topography on western boundary currents. J. Mar. Res. 72, 7394.CrossRefGoogle Scholar
Stern, M. 1998 Separation of a density current from the bottom of a continental slope. J. Phys. Oceanogr. 28, 20402049.2.0.CO;2>CrossRefGoogle Scholar
Veronis, G. 1966 a Wind-driven ocean circulation-part 1. Linear theory and perturbation analysis. Deep-Sea Res. (I) 13, 1729.Google Scholar
Veronis, G. 1966 b Wind-driven ocean circulation-part 2. Numerical solutions of the non-linear problem. Deep-Sea Res. (II) 13, 3155.Google Scholar
Verron, J. & Le Provost, C. 1991 Response of eddy-resolved general circulation numerical models to asymmetrical wind forcing. Dyn. Atmos. Oceans 15, 505533.CrossRefGoogle Scholar
Yang, H. 1996 The subtropical/subpolar gyre exchange in the presence of annually migrating wind and a meandering jet: water mass exchange. J. Phys. Oceanogr. 26, 115130.2.0.CO;2>CrossRefGoogle Scholar
Ypma, S., van Sebille, E., Kiss, A. & Spence, P. 2016 The separation of the east Australian current: a Lagrangian approach to potential vorticity and upstream control. J. Geophys. Res.: Oceans 121, 758774.CrossRefGoogle Scholar