Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T17:56:03.809Z Has data issue: false hasContentIssue false

A Zel’dovich–von Neumann–Döring-like detonation wave in a multi-temperature mixture

Published online by Cambridge University Press:  02 May 2019

Damir Madjarević*
Affiliation:
Department of Mechanics, Faculty of Technical Sciences, University of Novi Sad, 21101 Novi Sad, Serbia
Srboljub Simić
Affiliation:
Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, 21101 Novi Sad, Serbia
Ana Jacinta Soares
Affiliation:
Centro de Matemática, Universidade do Minho, 4710-057 Braga, Portugal
*
Email address for correspondence: damirm@uns.ac.rs

Abstract

The detonation wave structure is analysed in a binary mixture undergoing a reversible chemical reaction represented by $A_{r}\rightleftharpoons A_{p}$. It is assumed that the flow satisfies the proper basic assumptions of the Zel’dovich–von Neumann–Döring (ZND) detonation model, namely the flow is one-dimensional and the shock is represented by a jump discontinuity, but the assumption of local thermodynamic equilibrium is disregarded. This allows us to deeply investigate the coupling between the detonation structure of overdriven detonations and its chemical kinetics. The thermodynamic non-equilibrium effects are taken into account in the mathematical description, using the model of a multi-temperature mixture developed within extended thermodynamics, which has been proved to be consistent with a kinetic theory approach. The reaction rate is then enriched with terms that take into account the temperatures of the constituents. The results show that the temperature difference between components within the detonation wave structure, which describes thermodynamic non-equilibrium, is driven by the chemical reaction. Numerical computations confirm the existence of non-monotonic profiles in the reaction zone of overdriven detonations which are sensitive to changes in the activation energy and reaction heat.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardos, C., Golse, F. & Levermore, C. D. 1993 Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Maths 46 (5), 667753.Google Scholar
Bdzil, J. B. & Stewart, D. S. 2007 The dynamics of detonation in explosive systems. Annu. Rev. Fluid Mech. 39, 263292.Google Scholar
Bird, G. A. 1968 The structure of normal shock waves in a binary gas mixture. J. Fluid Mech. 31 (4), 657668.Google Scholar
Bisi, M., Martalò, G. & Spiga, G. 2011 Multi-temperature Euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions. Europhys. Lett. 95 (5), 55002.Google Scholar
Bisi, M., Martalò, G. & Spiga, G. 2013 Multi-temperature fluid-dynamic model equations from kinetic theory in a reactive gas: the steady shock problem. Comput. Maths Applics. 66 (8), 14031417.Google Scholar
Brini, F. 2009 On the flame structure in multi-temperature mixture theory. Ric. Mat. 58 (1), 6376.Google Scholar
Cael, G., Ng, H. D., Bates, K. R., Nikiforakis, N. & Short, M. 2009 Numerical simulation of detonation structures using a thermodynamically consistent and fully conservative reactive flow model for multi-component computations. Proc. R. Soc. Lond. A 465 (2107), rspa.2008.0371.Google Scholar
Carvalho, F. & Soares, A. J. 2012 On the dynamics and linear stability of one-dimensional steady detonation waves. J. Phys. A 45 (25), 255501.Google Scholar
Clavin, P. 2004 Theory of gaseous detonations. Chaos 14 (3), 825838.Google Scholar
Clavin, P. & Denet, B. 2018 Decay of plane detonation waves to the self-propagating Chapman–Jouguet regime. J. Fluid Mech. 845, 170202.Google Scholar
Conforto, F., Groppi, M., Monaco, R. & Spiga, G. 2004 Steady detonation waves for gases undergoing dissociation/recombination and bimolecular reactions. Contin. Mech. Thermodyn. 16 (1–2), 149161.Google Scholar
Conforto, F., Monaco, R. & Ricciardello, A. 2014 Analysis of steady combustion processes in a recombination reaction. Contin. Mech. Thermodyn. 26 (4), 503519.Google Scholar
Conforto, F., Monaco, R., Schürrer, F. & Ziegler, I. 2003 Steady detonation waves via the Boltzmann equation for a reacting mixture. J. Phys. A 36 (20), 53815398.Google Scholar
Courant, R. & Friedrichs, K. 1977 Supersonic Flow and Shock Waves. Springer.Google Scholar
Faria, L. M., Kasimov, A. R. & Rosales, R. R. 2015 Theory of weakly nonlinear self-sustained detonations. J. Fluid Mech. 784, 163198.Google Scholar
Fickett, W. 1985 Introduction to Detonation Theory. University of California Press.Google Scholar
Fickett, W. & Davis, W. C. 1979 Detonation. University of California Press.Google Scholar
Gardner, R. A. 1983 On the detonation of a combustible gas. Trans. Am. Math. Soc. 277 (2), 431468.Google Scholar
Giovangigli, V. 1999 Multicomponent Flow Modeling. (Modeling and Simulation in Science, Engineering and Technology) , Birkhäuser.Google Scholar
Goldman, E. & Sirovich, L. 1967 Equations for gas mixtures. Phys. Fluids 10 (9), 19281940.Google Scholar
Gouin, H. & Ruggeri, T. 2008 Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids. Phys. Rev. E 78 (1), 016303.Google Scholar
Hesaaraki, M. & Razani, A. 2001 On the existence of Chapman–Jouguet detonation waves. Bull. Austral. Math. Soc. 63 (3), 485496.Google Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1954 Molecular Theory of Gases and Liquids, vol. 26. Wiley.Google Scholar
Kasimov, A. R. & Korneev, S. V. 2014 Detonation in supersonic radial outflow. J. Fluid Mech. 760, 313341.Google Scholar
Khokhlov, A. 1989 The structure of detonation waves in supernovae. Mon. Not. R. Astron. Soc. 239 (3), 785808.Google Scholar
Kosuge, S., Aoki, K. & Takata, S. 2001 Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules. Eur. J. Mech. (B/Fluids) 20 (1), 87126.Google Scholar
Kremer, G. M., Bianchi, M. P. & Soares, A. J. 2007 Analysis of the trend to equilibrium of a chemically reacting system. J. Phys. A 40 (10), 2553.Google Scholar
Lee, J. H. S. 2008 The Detonation Phenomenon. Cambridge University Press.Google Scholar
Liu, T.-P. & Yu, S.-H. 1999 Nonlinear stability of weak detonation waves for a combustion model. Commun. Math. Phys. 204 (3), 551586.Google Scholar
Lyng, G. & Zumbrun, K. 2004 A stability index for detonation waves in Majda’s model for reacting flow. Physica D 194 (1–2), 129.Google Scholar
Madjarević, D., Ruggeri, T. & Simić, S. 2014 Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures. Phys. Fluids 26 (10), 106102.Google Scholar
Madjarević, D. & Simić, S. 2013 Shock structure in helium–argon mixture – a comparison of hyperbolic multi-temperature model with experiment. Europhys. Lett. 102 (4), 44002.Google Scholar
Majda, A. 1981 A qualitative model for dynamic combustion. SIAM J. Appl. Maths 41 (1), 7093.Google Scholar
Marques Junior, W., Soares, A. J., Bianchi, M. P. & Kremer, G. M. 2015 Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model. J. Phys. A 48 (23), 235501.Google Scholar
Müller, I. & Ruggeri, T. 1998 Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37. Springer.Google Scholar
Murugesan, R., Sirmas, N. & Radulescu, M.2017 Non-equilibrium effects on thermal ignition using molecular dynamics simulations. arXiv:1712.08208.Google Scholar
Powers, J. M., Stewart, D. S. & Krier, H. 1990a Theory of two-phase detonation – Part I: modeling. Combust. Flame 80, 264279.Google Scholar
Powers, J. M., Stewart, D. S. & Krier, H. 1990b Theory of two-phase detonation – Part II: structure. Combust. Flame 80, 280303.Google Scholar
Razani, A. 2002 Weak and strong detonation profiles for a qualitative model. J. Math. Anal. Appl. 276 (2), 868881.Google Scholar
Ruggeri, T. 2009 Multi-temperature mixture of fluids. Theor. Appl. Mech. 36 (3), 207238.Google Scholar
Ruggeri, T. & Simić, S. 2007 On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single- and multi-temperature models. Math. Meth. Appl. Sci. 30 (7), 827849.Google Scholar
Ruggeri, T. & Simić, S. 2009 Average temperature and Maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80 (2), 026317.Google Scholar
Ruggeri, T. & Simić, S. 2017 Non-equilibrium diffusion temperatures in mixture of gases via Maxwellian iteration. Ric. Mat. 66 (2), 293312.Google Scholar
Sharpe, G. J. 1999 Linear stability of pathological detonations. J. Fluid Mech. 401, 311338.Google Scholar
Shi, L., Shen, H., Zhang, P., Zhang, D. & Wena, C. 2017 Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 189, 841853.Google Scholar
Szepessy, A. 1999 Dynamics and stability of a weak detonation wave. Commun. Math. Phys. 202 (3), 547569.Google Scholar
Taylor, B. D., Kessler, D. A. & Oran, E. S. 2013 Estimates of vibrational nonequilibrium time scales in hydrogen–air detonation waves. In Proceedings of the 24th International Colloquium on the Dynamics of Explosion and Reactive Systems ICDERS, Taiwan, July 28–August 2, Paper 223.Google Scholar
Truesdell, C. A. 1984 Rational Thermodynamics. Springer.Google Scholar
Williams, F. A. 1985 Combustion Theory. Benjamin/Cummings.Google Scholar
Zel’dovich, Y. & Raizer, Y. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.Google Scholar