Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T23:09:39.277Z Has data issue: false hasContentIssue false

Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance

Published online by Cambridge University Press:  11 January 2021

Daphné Lemasquerier*
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, 13013, France
B. Favier
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, 13013, France
M. Le Bars
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, 13013, France
*
Email address for correspondence: lemasquerier.pro@protonmail.com

Abstract

The dynamics, structure and stability of zonal jets in planetary flows are still poorly understood, especially in terms of coupling with the small-scale turbulent flow. Here, we use an experimental approach to address the questions of zonal jets formation and long-term evolution. A strong and uniform topographic $\beta$-effect is obtained inside a water-filled rotating tank thanks to the paraboloidal fluid free upper surface combined with a specifically designed bottom plate. A small-scale turbulent forcing is performed by circulating water through the base of the tank. Time-resolving particle image velocimetry measurements reveal the self-organization of the flow into multiple zonal jets with a strong instantaneous signature. We identify a subcritical bifurcation between two regimes of jets depending on the forcing intensity. In the first regime, the jets are steady, weak in amplitude, and directly forced by the local Reynolds stresses due to our forcing. In the second one, we observe highly energetic and dynamic jets of width larger than the forcing scale. An analytical modelling based on the quasi-geostrophic approximation reveals that this subcritical bifurcation results from the resonance between the directly forced Rossby waves and the background zonal flow.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasyev, Y.D. & Ivanov, L.M. 2019 $\beta$-plume mechanism of zonal jet creation by a spatially localized forcing. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. B. Galperin & P.L. Read), pp. 266–283. Cambridge University Press.CrossRefGoogle Scholar
Afanasyev, Y.D., O'leary, S., Rhines, P.B. & Lindahl, E. 2012 On the origin of jets in the ocean. Geophys. Astrophys. Fluid Dyn. 106 (2), 113137.CrossRefGoogle Scholar
Afanasyev, Y.D. & Wells, J. 2005 Quasi-two-dimensional turbulence on the polar beta-plane: laboratory experiments. Geophys. Astrophys. Fluid Dyn. 99 (1), 117.CrossRefGoogle Scholar
Arnold, N.P., Tziperman, E. & Farrell, B. 2011 Abrupt transition to strong superrotation driven by equatorial wave resonance in an idealized GCM. J. Atmos. Sci. 69 (2), 626640.CrossRefGoogle Scholar
Aubert, J., Jung, S. & Swinney, H.L. 2002 Observations of zonal flow created by potential vorticity mixing in a rotating fluid. Geophys. Res. Lett. 29 (18), 23-123-4.CrossRefGoogle Scholar
Bakas, N.A. & Ioannou, P.J. 2013 Emergence of large scale structure in barotropic $\beta$-plane turbulence. Phys. Rev. Lett. 110 (22), 224501.CrossRefGoogle ScholarPubMed
Barbosa Aguiar, A.C., Read, P.L., Wordsworth, R.D., Salter, T. & Hiro Yamazaki, Y. 2010 A laboratory model of Saturn's North Polar Hexagon. Icarus 206 (2), 755763.CrossRefGoogle Scholar
Bastin, M.E. & Read, P.L. 1997 A laboratory study of baroclinic waves and turbulence in an internally heated rotating fluid annulus with sloping endwalls. J. Fluid Mech. 339, 173198.CrossRefGoogle Scholar
Bastin, M.E. & Read, P.L. 1998 Experiments on the structure of baroclinic waves and zonal jets in an internally heated, rotating, cylinder of fluid. Phys. Fluids 10 (2), 374389.CrossRefGoogle Scholar
Bellani, G. & Variano, E.A. 2013 Homogeneity and isotropy in a laboratory turbulent flow. Exp. Fluids 55 (1), 1646.CrossRefGoogle Scholar
Benzi, R., Malguzzi, P., Speranza, A. & Sutera, A. 1986 The statistical properties of general atmospheric circulation: observational evidence and a minimal theory of bimodality. Q. J. R. Meteorol. Soc. 112 (473), 661674.CrossRefGoogle Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009 A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.CrossRefGoogle Scholar
Bouchet, F., Nardine, C. & Tangarife, T. 2019 a Kinetic theory and quasi-linear theories of jet dynamics. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. B. Galperin & P.L. Read), pp. 368–379. Cambridge University Press.CrossRefGoogle Scholar
Bouchet, F., Rolland, J. & Simonnet, E. 2019 b Rare event algorithm links transitions in turbulent flows with activated nucleations. Phys. Rev. Lett. 122 (7), 074502.CrossRefGoogle ScholarPubMed
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515 (5), 227295.CrossRefGoogle Scholar
Bouchet, F. & Venaille, A. 2019 Zonal flows as statistical equilibria. In Zonal Jets, 1st edn. (ed. B. Galperin & P.L. Read), pp. 347–359. Cambridge University Press.CrossRefGoogle Scholar
Burin, M.J., Caspary, K.J., Edlund, E.M., Ezeta, R., Gilson, E.P., Ji, H., McNulty, M., Squire, J. & Tynan, G.R. 2019 Turbulence and jet-driven zonal flows: secondary circulation in rotating fluids due to asymmetric forcing. Phys. Rev. E 99 (2), 023108.CrossRefGoogle ScholarPubMed
Cabanes, S., Aurnou, J., Favier, B. & Le Bars, M. 2017 A laboratory model for deep-seated jets on the gas giants. Nat. Phys. 13 (4), 387390.CrossRefGoogle Scholar
Cabanes, S., Favier, B. & Le Bars, M. 2018 Some statistical properties of three-dimensional zonostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 112 (3), 207221.CrossRefGoogle Scholar
Chan, J.C.L. & Williams, R.T. 1987 Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part I: Zero mean flow. J. Atmos. Sci. 44 (9), 12571265.2.0.CO;2>CrossRefGoogle Scholar
Charney, J.G. & DeVore, J.G. 1979 Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36 (7), 12051216.2.0.CO;2>CrossRefGoogle Scholar
Charney, J.G., Shukla, J. & Mo, K.C. 1981 Comparison of a barotropic blocking theory with observation. J. Atmos. Sci. 38 (4), 762779.2.0.CO;2>CrossRefGoogle Scholar
Chemke, R. & Kaspi, Y. 2016 The effect of eddy–eddy interactions on jet formation and macroturbulent scales. J. Atmos. Sci. 73 (5), 20492059.CrossRefGoogle Scholar
Condie, S.A. & Rhines, P.B. 1994 A convective model for the zonal jets in the atmospheres of Jupiter and Saturn. Nature 367 (6465), 711713.CrossRefGoogle Scholar
Connaughton, C.P., Nadiga, B.T., Nazarenko, S.V. & Quinn, B.E. 2010 Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech. 654, 207231.CrossRefGoogle Scholar
Cornillon, P.C., Firing, E., Thompson, A.F., Ivanov, L.M., Kamenkovich, I., Buckingham, C.E. & Afanasyev, Y.D. 2019 Oceans. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. B. Galperin & P.L. Read), pp. 46–71. Cambridge University Press.CrossRefGoogle Scholar
Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H.J. 2014 Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl Acad. Sci. USA 111 (34), 1233112336.CrossRefGoogle ScholarPubMed
Cravatte, S., Kessler, W.S. & Marin, F. 2012 Intermediate zonal jets in the tropical pacific ocean observed by argo floats. J. Phys. Oceanogr. 42 (9), 14751485.CrossRefGoogle Scholar
Davey, M.K. & Killworth, P.D. 1989 Flows produced by discrete sources of buoyancy. J. Phys. Oceanogr. 19 (9), 12791290.2.0.CO;2>CrossRefGoogle Scholar
De Verdiere, A.C. 1979 Mean flow generation by topographic Rossby waves. J. Fluid Mech. 94 (1), 3964.CrossRefGoogle Scholar
Di Nitto, G., Espa, S. & Cenedese, A. 2013 Simulating zonation in geophysical flows by laboratory experiments. Phys. Fluids 25 (8), 086602.CrossRefGoogle Scholar
Dritschel, D.G. & McIntyre, M.E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65 (3), 855874.CrossRefGoogle Scholar
Espa, S., Bordi, I., Frisius, T., Fraedrich, K., Cenedese, A. & Sutera, A. 2012 Zonal jets and cyclone–anticyclone asymmetry in decaying rotating turbulence: laboratory experiments and numerical simulations. Geophys. Astrophys. Fluid Dyn. 106 (6), 557573.CrossRefGoogle Scholar
Firing, E. & Beardsley, R.C. 1976 The behavior of a barotropic eddy on a $\beta$-plane. J. Phys. Oceanogr. 6 (1), 5765.2.0.CO;2>CrossRefGoogle Scholar
Flierl, G.R. 1977 The application of linear quasigeostrophic dynamics to Gulf stream rings. J. Phys. Oceanogr. 7 (3), 365379.2.0.CO;2>CrossRefGoogle Scholar
Früh, W.-G. & Read, P.L. 1999 Experiments on a barotropic rotating shear layer. Part 1. Instability and steady vortices. J. Fluid Mech. 383, 143173.CrossRefGoogle Scholar
Galperin, B., Hoemann, J., Espa, S. & Di Nitto, G. 2014 a Anisotropic turbulence and Rossby waves in an easterly jet: an experimental study. Geophys. Res. Lett. 41 (17), 62376243.CrossRefGoogle Scholar
Galperin, B. & Read, P.L. 2019 Zonal Jets: Phenomenology, Genesis, and Physics. Cambridge University Press.CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S. & Dikovskaya, N. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with a $\beta$-effect. Ocean Dyn. 60 (2), 427441.CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P.L., Yamazaki, Y.H. & Wordsworth, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a $\beta$-effect. Nonlinear Process. Geophys. 13 (1), 8398.CrossRefGoogle Scholar
Galperin, B., Sukoriansky, S., Young, R.M.B., Chemke, R., Kaspi, Y., Read, P.L. & Dikovskaya, N. 2019 Barotropic and zonostrophic turbulence. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. B. Galperin & P.L. Read), pp. 220–237. Cambridge University Press.CrossRefGoogle Scholar
Galperin, B., Young, R.M.B., Sukoriansky, S., Dikovskaya, N., Read, P.L., Lancaster, A.J. & Armstrong, D. 2014 b Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 229, 295320.CrossRefGoogle Scholar
Gill, A.E. 1974 The stability of planetary waves on an infinite beta-plane. Geophys. Fluid Dyn. 6 (1), 2947.CrossRefGoogle Scholar
Gillet, N., Brito, D., Jault, D. & Nataf, H.C. 2007 Experimental and numerical studies of convection in a rapidly rotating spherical shell. J. Fluid Mech. 580, 83121.CrossRefGoogle Scholar
Guervilly, C. & Cardin, P. 2016 Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model. J. Fluid Mech. 808, 6189.CrossRefGoogle Scholar
Guervilly, C. & Cardin, P. 2017 Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores. Geophys. J. Intl 211 (1), 455471.CrossRefGoogle Scholar
Held, I.M. 1983 Stationary and quasi-stationary eddies in the extratropical troposphere: theory. In Large-Scale Dynamical Processes in the Atmosphere (ed. B. Hoskins & R. Pearce), pp. 127168. Academic Press.Google Scholar
Herbert, C., Caballero, R. & Bouchet, F. 2020 Atmospheric bistability and abrupt transitions to superrotation: wave–jet resonance and hadley cell feedbacks. J. Atmos. Sci. 77 (1), 3149.CrossRefGoogle Scholar
Hide, R. 1968 On source-sink flows in a rotating fluid. J. Fluid Mech. 32 (4), 737764.CrossRefGoogle Scholar
Hide, R. & Mason, P.J. 1975 Sloping convection in a rotating fluid. Adv. Phys. 24 (1), 47100.CrossRefGoogle Scholar
Hide, R. & Titman, C.W. 1967 Detached shear layers in a rotating fluid. J. Fluid Mech. 29 (1), 3960.CrossRefGoogle Scholar
Ingersoll, A.P., Dowling, T.E., Gierasch, P.J., Orton, G.S., Read, P.L., Sánchez-Lavega, A., Showman, A.P., Simon-Miller, A.A. & Vasavada, A.R. 2007 Dynamics of Jupiter's atmosphere. In Jupiter: The Planet, Satellites and Magnetosphere (ed. F. Bagenal, T.E. Dowling & W.B. McKinnon), vol. 1, pp. 105128. Cambridge University Press.Google Scholar
Ivanov, L.M., Collins, C.A. & Margolina, T.M. 2009 System of quasi-zonal jets off California revealed from satellite altimetry. Geophys. Res. Lett. 36 (3), L03609.CrossRefGoogle Scholar
Kaplan, E.J., Schaeffer, N., Vidal, J. & Cardin, P. 2017 Subcritical thermal convection of liquid metals in a rapidly rotating sphere. Phys. Rev. Lett. 119 (9), 094501.CrossRefGoogle Scholar
Kaspi, Y., et al. . 2018 Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature 555 (7695), 223226.CrossRefGoogle ScholarPubMed
Kaspi, Y., Galanti, E., Showman, A.P., Stevenson, D.J., Guillot, T., Iess, L. & Bolton, S.J. 2020 Comparison of the deep atmospheric dynamics of Jupiter and Saturn in light of the Juno and Cassini gravity measurements. Space Sci. Rev. 216 (5), 84.CrossRefGoogle Scholar
Lorenz, E.N. 1972 Barotropic instability of rossby wave motion. J. Atmos. Sci. 29 (2), 258265.2.0.CO;2>CrossRefGoogle Scholar
Malguzzi, P., Speranza, A., Sutera, A. & Caballero, R. 1996 Nonlinear amplification of stationary rossby waves near resonance. Part I. J. Atmos. Sci. 53 (2), 298311.2.0.CO;2>CrossRefGoogle Scholar
Malguzzi, P., Speranza, A., Sutera, A. & Caballero, R. 1997 Nonlinear amplification of stationary Rossby waves near resonance. Part II. J. Atmos. Sci. 54 (20), 24412451.2.0.CO;2>CrossRefGoogle Scholar
Manfroi, A.J. & Young, W.R. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56 (5), 784800.2.0.CO;2>CrossRefGoogle Scholar
Matulka, A.M. & Afanasyev, Y.D. 2015 Zonal jets in equilibrating baroclinic instability on the polar beta-plane: experiments with altimetry. J. Geophys. Res.: Oceans 120 (9), 61306144.CrossRefGoogle Scholar
Maximenko, N.A., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32 (12), L12607.CrossRefGoogle Scholar
Maximenko, N.A., Melnichenko, O.V., Niiler, P.P. & Sasaki, H. 2008 Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett. 35 (8), L08603.CrossRefGoogle Scholar
McEwan, A.D., Thompson, R.O.R.Y. & Plumb, R.A. 1980 Mean flows driven by weak eddies in rotating systems. J. Fluid Mech. 99 (3), 655672.CrossRefGoogle Scholar
Meunier, P. & Leweke, T. 2003 Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp. Fluids 35 (5), 408421.CrossRefGoogle Scholar
Nezlin, M.V. & Snezhkin, E.N. 1993 Experimental configurations. In Rossby Vortices, Spiral Structures, Solitons: Astrophysics and Plasma Physics in Shallow Water Experiments (ed. M.V. Nezlin & E.N. Snezhkin), pp. 67–79. Springer.CrossRefGoogle Scholar
Niino, H. & Misawa, N. 1984 An experimental and theoretical study of barotropic instability. J. Atmos. Sci. 41 (12), 19922011.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1981 Resonant topographic waves in barotropic and baroclinic flows. J. Atmos. Sci. 38 (12), 26262641.2.0.CO;2>CrossRefGoogle Scholar
Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H.J. 2013 Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc. Natl Acad. Sci. USA 110 (14), 5336.CrossRefGoogle ScholarPubMed
Porco, C.C., et al. . 2003 Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science 299 (5612), 15411547.CrossRefGoogle ScholarPubMed
Read, P.L., Yamazaki, Y.H., Lewis, S.R., Williams, P.D., Miki-Yamazaki, K., Sommeria, J., Didelle, H. & Fincham, A. 2004 Jupiter's and Saturn's convectively driven banded jets in the laboratory. Geophys. Res. Lett. 31 (22), L22701.CrossRefGoogle Scholar
Read, P.L. 2019 Zonal jet flows in the laboratory: an introduction. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. B. Galperin & P.L. Read), pp. 119–134. Cambridge University Press.CrossRefGoogle Scholar
Read, P.L., Jacoby, T.N.L., Rogberg, P.H.T., Wordsworth, R.D., Yamazaki, Y.H., Miki- Yamazaki, K., Young, R.M.B., Sommeria, J., Didelle, H. & Viboud, S. 2015 An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane. Phys. Fluids 27 (8), 085111.CrossRefGoogle Scholar
Read, P.L., Yamazaki, Y.H., Lewis, S.R., Williams, P.D., Wordsworth, R., Miki-Yamazaki, K., Sommeria, J. & Didelle, H. 2007 Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci. 64 (11), 40314052.CrossRefGoogle Scholar
Rhines, P.B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (03), 417.CrossRefGoogle Scholar
Rogers, J.H. 1995 The Giant Planet Jupiter, vol. 6. Cambridge University Press.Google Scholar
Sánchez-Lavega, A., et al. . 2019 Gas giants. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. B. Galperin & P.L. Read), pp. 72–103. Cambridge University Press.Google Scholar
Sansón, L.Z. & Van Heijst, G.J.F. 2000 Nonlinear Ekman effects in rotating barotropic flows. J. Fluid Mech. 412, 7591.CrossRefGoogle Scholar
Schneider, T. 2006 The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34, 655688.CrossRefGoogle Scholar
Scott, R.K. 2010 The structure of zonal jets in shallow water turbulence on the sphere. In IUTAM Symposium on Turbulence in the Atmosphere and Oceans (ed. D. Dritschel), vol. 28, pp. 243–252. Springer.CrossRefGoogle Scholar
Scott, R.K. & Dritschel, D.G. 2012 The structure of zonal jets in geostrophic turbulence. J. Fluid Mech. 711, 576598.CrossRefGoogle Scholar
Scott, R.K. & Dritschel, D.G. 2019 Zonal jet formation by potential vorticity mixing at large and small scales. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. B. Galperin & P.L. Read), pp. 238–246. Cambridge University Press.CrossRefGoogle Scholar
Semin, B., Garroum, N., Pétrélis, F. & Fauve, S. 2018 Nonlinear saturation of the large scale flow in a laboratory model of the quasibiennial oscillation. Phys. Rev. Lett. 121 (13), 134502.CrossRefGoogle Scholar
Slavin, A.G. & Afanasyev, Y.D. 2012 Multiple zonal jets on the polar beta plane. Phys. Fluids 24 (1), 016603.CrossRefGoogle Scholar
Smith, C.A., Speer, K.G. & Griffiths, R.W. 2014 Multiple zonal jets in a differentially heated rotating annulus$^{*,+}$. J. Phys. Oceanogr. 44 (9), 22732291.CrossRefGoogle Scholar
Solomon, T.H., Holloway, W.J. & Swinney, H.L. 1993 Shear flow instabilities and Rossby waves in barotropic flow in a rotating annulus. Phys. Fluids A 5 (8), 19711982.CrossRefGoogle Scholar
Sommeria, J., Meyers, S.D. & Swinney, H.L. 1989 Laboratory model of a planetary eastward jet. Nature 337 (6202), 5861.CrossRefGoogle Scholar
Stommel, H. 1982 Is the South Pacific helium-3 plume dynamically active? Earth Planet. Sci. Lett. 61 (1), 6367.CrossRefGoogle Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the rhines scale. J. Atmos. Sci. 64 (9), 33123327.CrossRefGoogle Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2008 Nonlinear waves in zonostrophic turbulence. Phys. Rev. Lett. 101 (17), 178501.CrossRefGoogle ScholarPubMed
Sukoriansky, S., Dikovskaya, N., Grimshaw, R. & Galperin, B. 2012 Rossby waves and zonons in zonostrophic turbulence. AIP Conf. Proc. 1439 (1), 111122.CrossRefGoogle Scholar
Sukoriansky, S., Galperin, B. & Dikovskaya, N. 2002 Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets. Phys. Rev. Lett. 89 (12), 124501.CrossRefGoogle ScholarPubMed
Thompson, R.O.R.Y. 1980 A prograde jet driven by Rossby waves. J. Atmos. Sci. 37 (6), 12161226.2.0.CO;2>CrossRefGoogle Scholar
Tian, Y., Weeks, E.R., Ide, K., Urbach, J.S., Baroud, C.N., Ghil, M. & Swinney, H.L. 2001 Experimental and numerical studies of an eastward jet over topography. J. Fluid Mech. 438, 129157.CrossRefGoogle Scholar
Tollefson, J., et al. . 2017 Changes in Jupiter's zonal wind profile preceding and during the Juno mission. Icarus 296, 163178.CrossRefGoogle Scholar
Vallis, G.K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press.CrossRefGoogle Scholar
Vasavada, A.R. & Showman, A.P. 2005 Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68 (8), 19351996.CrossRefGoogle Scholar
Weeks, E.R., Tian, Y., Urbach, J.S., Ide, K., Swinney, H.L. & Ghil, M. 1997 Transitions between blocked and zonal flows in a rotating annulus with topography. Science 278 (5343), 15981601.CrossRefGoogle Scholar
Whitehead, J.A. 1975 Mean flow generated by circulation on a $\beta$-plane: an analogy with the moving flame experiment. Tellus 27 (4), 358364.CrossRefGoogle Scholar
Wordsworth, R.D., Read, P.L. & Yamazaki, Y.H. 2008 Turbulence, waves, and jets in a differentially heated rotating annulus experiment. Phys. Fluids 20 (12), 126602.CrossRefGoogle Scholar
Yarom, E. & Sharon, E. 2014 Experimental observation of steady inertial wave turbulence in deep rotating flows. Nat. Phys. 10 (7), 510514.CrossRefGoogle Scholar
Young, R.M.B. & Read, P.L. 2017 Forward and inverse kinetic energy cascades in Jupiter's turbulent weather layer. Nat. Phys. 13 (11), 11351140.CrossRefGoogle Scholar
Youssef, A. & Marcus, P.S. 2003 The dynamics of jovian white ovals from formation to merger. Icarus 162 (1), 7493.CrossRefGoogle Scholar
Zhang, Y. & Afanasyev, Y.D. 2014 Beta-plane turbulence: experiments with altimetry. Phys. Fluids 26 (2), 026602.CrossRefGoogle Scholar
Supplementary material: PDF

Lemasquerier et al. supplementary material

Captions for movies 1-5

Download Lemasquerier et al. supplementary material(PDF)
PDF 146 KB

Lemasquerier et al. supplementary movie 1

See pdf file for movie caption

Download Lemasquerier et al. supplementary movie 1(Video)
Video 61.5 MB

Lemasquerier et al. supplementary movie 2

See pdf file for movie caption

Download Lemasquerier et al. supplementary movie 2(Video)
Video 12.2 MB

Lemasquerier et al. supplementary movie 3

See pdf file for movie caption

Download Lemasquerier et al. supplementary movie 3(Video)
Video 18.7 MB

Lemasquerier et al. supplementary movie 4

See pdf file for movie caption

Download Lemasquerier et al. supplementary movie 4(Video)
Video 17 MB

Lemasquerier et al. supplementary movie 5

See pdf for movie caption

Download Lemasquerier et al. supplementary movie 5(Video)
Video 34.1 MB